

Approved plots: X(3872) rediscovery from B decay with 62.8 fb⁻¹ of Phase 3 data at Belle II

The Belle II Collaboration

Abstract

The decay of $B \to J/\psi \pi^+ \pi^- K$ is studied using 62.8 fb⁻¹ data collected at the $\Upsilon(4S)$ resonance. Evidence for $B \to X(3872)K$ with a statistical significance of 4.6 σ is found. This note contains the public plots associated with the internal note BELLE2-NOTE-PH-2020-025.

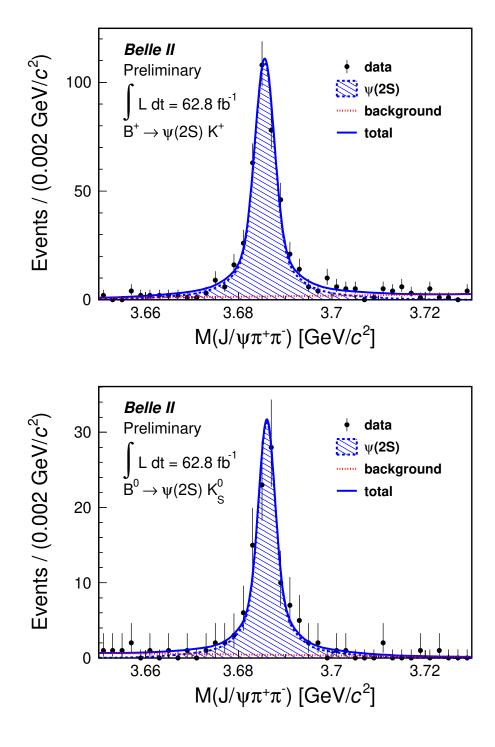


FIG. 1: The $M_{J/\psi\pi^+\pi^-}$ distributions on the $\psi(2S)$ signal region with the real data. Here, blue solid line shows total fit result. A triple Gaussian with a common mean are used as a probability density function (PDF) for the signal component, where parameters except the mean and scaling factor of the sigmas are determined with the signal Monte-Carlo (MC) samples. A first-order Chebyshev function is used as a PDF for the background component.

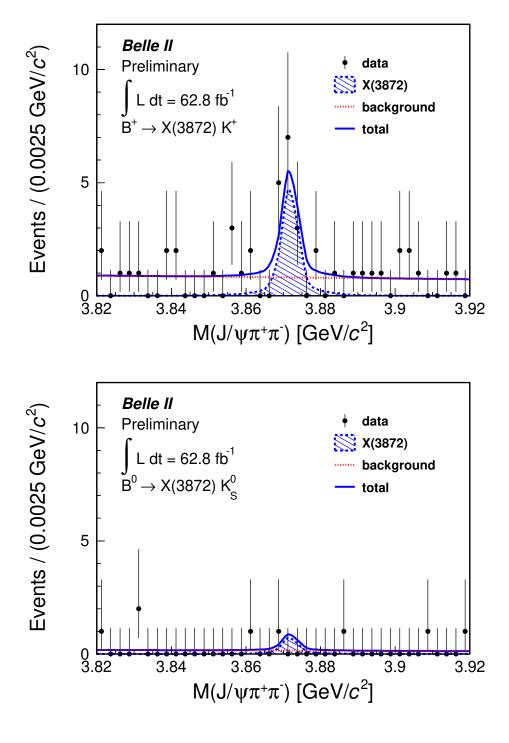


FIG. 2: The $M_{J/\psi\pi^+\pi^-}$ distributions on the X(3872) signal region with the real data. Here, blue solid line shows total fit result. A histogram PDF generated with signal MC samples assuming the world average mass of X(3872) [1] and the Breit-Wigner width of the LHCb measurement [2] is used as a PDF for the signal component. A first-order Chebyshev function is used as a PDF for the background component. A simultaneous fit is performed so as to combine the distribution for B^0 decay and that for B^+ decay, where a ratio of the expected signal yields is constraint. Here, $\mathcal{B}(B^0 \to X(3872)K^0)/\mathcal{B}(B^+ \to X(3872)K^+) = 0.50$ is assumed [3], and the signal efficiency is determined with the signal MC samples. The X(3872) signal yields is 14.4 ± 4.6 , and the statistical significance is 4.6σ .

- $[1]\,$ M. Tanabashi et~al. (Particle Data Group), Phys. Rev. D $\bf 98,\,030001$ (2018).
- [2] R. Aaij et al. (LHCb collaboration), J. High Energ. Phys. 2020, 123 (2020).
- [3] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. D 84 052004 (2011) .