10/01/2021XXVII Cracow EPIPHANY Conference

τ lifetime measurement method at Belle II

Istituto Nazionale di Fisica Nucleare

Stefano Moneta on behalf of the Belle II Collaboration

τ lifetime: physics motivation

- important parameter in SM (e.g. measure $\alpha_{\rm S}$ QCD at m_{τ})
- test lepton flavor universality $(\rm LFU)$

Previous measurements

3

Belle II and SuperKEKB

Measurement strategy

Measurement strategy

Strategy at Belle II

- (1) decay vertex \rightarrow reconstruct vertex for <u>3-prong τ </u>
- (2) estimate **tau momentum** $\vec{p_{\tau}} \rightarrow$ use events where both τ decay with 1 neutrino
- (3) **production vertex** \rightarrow intersection of \vec{p}_{τ} direction with plane $y = IP_y$

With respect to <u>Belle</u>:

- exploit **nanobeam scheme** \rightarrow use beam-spot constraint
- need just one 3-prong au o higher statistics

p_{τ} reconstruction

ℓ_{τ} reconstruction and IP constraint

Event topology

Study 1-prong×3-prong topology:

Simulation study on 200 $\rm fb^{-1}$ of MC

Event selection

Use 200 fb⁻¹ of MC

- Divide event into two hemispheres:
 - > **3-prong side** \rightarrow 3 charged π
 - > 1-prong side $\rightarrow 1$ charged $\pi + 1 \pi^0$
- Total energy of additional photons: $\sum E_{\gamma} < 600 \text{ MeV}$
- ρ -peak: 0.5 GeV < M_{ρ} < 1.3 GeV
- Reject possible kaons
- At least 1 hit in pixel detector for each π on 3-prong side

Proper decay time reconstruction

Find the minimum event per event \rightarrow optimized value of ℓ_{τ} , IP_x and IP_z

10/01/2021

Proper time resolution

For all tau pair events with MC-truth:

Lifetime extraction

- Subtract $\underline{u,d,s}$ and $\underline{c,b}$ backgrounds
- Fit proper time distribution with **convolution** of <u>resolution function</u> and <u>exponential distribution</u>:

Conclusions and outlook

With respect to <u>Belle</u>:

- Use information on beam-spot region (nanobeam scheme)
- ×3.6 effective luminosity (711 fb⁻¹ \rightarrow 200 fb⁻¹)
 - > <u>Tight selection</u> \rightarrow gain "only" a factor ×1.4 in event yield (1615 events/fb⁻¹ \rightarrow 2280 events/fb⁻¹)
 - > Proper time resolution $\rightarrow \times 2$ narrower

Collected $\simeq 80 \text{ fb}^{-1}$ during 2020 \implies already <u>competitive by end 2021</u>

Further studies to estimate **systematics** (not exhaustive):

- 1. Test dependence from resolution function in the fit
- 2. Background parameterization
- 3. Beam-spot position, ISR/FSR simulation
- 4. Vertex detector alignment (dominant at Belle and Babar)

Thanks for your attention!

Backup slides

LFU test with precise τ -decay measurements

From the ratios between partial decay widths of leptons:

Others τ LFU tests

Belle II detector

- general purpose spectrometer
- high hermeticity
- designed to deal with high background rate

SuperKEKB luminosity

ℓ_{τ} reconstruction and IP constraint

Minimize $F(\ell_{\tau}, \operatorname{IP}_{x}, \operatorname{IP}_{z}) \rightarrow -\chi^{2}$ with 2 d.o.f.

Dataset

Event requirements

Event preselection

- 0.90 < Thrust < 0.99
 4 GeV < E_{vis, cms} < 10 GeV

Reduce qq and beam backgrounds

Optimized selection

Optimized selection

3) 0.5 GeV $< M_{\rm inv}(1{\text -}{\rm prong}) < 1.3$ GeV

4) 0.8 GeV < $M_{\rm inv}(3{\text -}{\rm prong}) < 1.6~{\rm GeV}$

Optimized selection

5) kaon-ID < 0.95 for all tracks

Proper decay time and IP reconstruction

Find the minimum of event per event \rightarrow optimized value of ℓ_{τ} , IP_x and IP_z

Lifetime extraction (correct p_{τ})

Look at the proper time reconstructed from the **correct** solution of tau momentum:

10/01/2021

Lifetime extraction (correct p_{τ})

The offset $\mu_1\,\mathrm{in}$ the resolution depends on generated proper time \rightarrow scale factor

ISR/FSR \rightarrow overestimate momentum $p_{\tau} \implies t = \ell_{\tau} \frac{m_{\tau}}{p_{\tau}c}$

Lifetime extraction (wrong p_{τ})

Look at the proper time reconstructed from the **wrong** solution of tau momentum:

Background subtraction

All the non $\tau\tau$ events (1.9%) are **qq** bkg:

- **q=u,d,s** quarks (1.7%)
 - \succ no lifetime component
 - \succ fit proper time with resolution function
 - ▶ find bias $\mu_1^{uds} = (0.3 \pm 1.0)$ fs

- **q=c,b** quarks (0.2%)
 - ▶ possible long-lived particles (e.g. D_0 , D^{\pm} , B^{\pm})
 - include a decay time component (convolution of Gaussian and exponential)
 - → find $\tau^{cb} = (300 \pm 10)$ fs