Search for Axion-Like Particles produced in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions at the Belle Il experiment.

10th January 2021
XXVII Cracow EPIPHANY Conference on Future of particle physics
Michael De Nuccio on behalf of the Belle II collaboration (michael.de.nuccio@desy.de)

HELMHOLTZ

SuperKEKB and Belle II.

SuperKEKB

- Asymmetric e ${ }^{+}$e- collider
@ $\mathrm{Y}(4 \mathrm{~S})$ energy $=10.58 \mathrm{GeV}$
- Second-generation B factory (optimized to produce a lot of B mesons)
- 50 times increase in luminosity with respect to predecessor KEKB: ~50 ab-1
- Up to now: $\sim 90 \mathrm{fb}^{-1}=\sim 0.09 \mathrm{ab}^{-1}$
- For this analysis: $445 \mathbf{p b}^{-1}=0.000445 \mathrm{ab}^{-1}$ (early 2018 data only)

Belle II

- Clean environment (e ${ }^{+}$e- collider)

Axion-Like Particles.

Physical process

- Axions:
proposal to solve strong CP problem
- Axion-like particles (a, ALPs):
~axions, but no mass-coupling constraint
Massive, neutral, pseudoscalar
- Possible portals to Dark Sector

Physical process

Signal: $e^{+} e^{-} \rightarrow \gamma \mathrm{a}, \mathrm{a} \rightarrow \gamma \gamma$

- 3- γ final state
- No tracks
- No missing energy

Main backgrounds:

- $e^{+} e^{-} \rightarrow \gamma \gamma(\gamma)$
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\gamma)$
(if we don't reconstruct the tracks)
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \boldsymbol{\pi} \boldsymbol{\pi}^{0} / \eta / \eta^{\prime} \gamma$
negligible peaking backgrounds
- Peak hunt throughout the kinematically-allowed mass spectrum
- Scan mass range $\mathrm{m}_{\mathrm{a}} \in[0.2,9.7] \mathrm{GeV} / \mathrm{c}^{2}$
- 1D fit of signal peak over smooth background

Previous status of searches

Selection performances

- Background rate
- Signal efficiency

Signal \& background modeling

- Signal:

- Peaking component: modeled with a Crystal Ball (CB): fit each MC sample interpolate parameters

- Background:
- Modeled with a polynomial
- Choice of polynomial order and fit range: reduced χ^{2} and smoothness criteria
- Polynomial parameters are floating for the final fit

Data/MC comparison

Great agreement already in 2018 (data taking for calibration \& tuning purposes)

Upper Limit (UL) extraction

- Binned NLL approach, CLs method
- Allow only positive signal yields, i.e. cross section $\sigma_{a \gamma \gamma} \geq 0$
- ALP mass scan in steps of $\mathbf{0 . 5} \sigma_{\mathbf{C B}}$ to search for signal peaks
- If no global significance > $\mathbf{3}$ is found (with systematics): we $\boldsymbol{s e t}$ limits
- No local significance > 3 has been found

Systematic uncertainties

Systematic uncertainties are small wrt statistical uncertainties.
Systematics are from:

- Choice of background polynomial order \& fit range (least irrelevant):
- Modify order and range and re-perform UL extraction, take the weakest limit (highest UL \Leftrightarrow lowest significance)

- Signal efficiency

- Signal resolution
from photon resolution studies

Results

Results

10.1103/PhysRevLett.125.161806

Results

Summary.

Summary

- Search for the direct production of a light pseudoscalar ALP a decaying into two photons
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathrm{\gamma}, \mathrm{a} \rightarrow \gamma \gamma$
- $m_{a} \in[0.2,9.7] \mathrm{GeV} / \mathrm{c}^{2}$
- No evidence for ALPs
- Set 95\% CL UL on gay
- These are the strongest limits to date for $\mathbf{m}_{\mathbf{a}} \in\left[\mathbf{0 . 2} \mathbf{1} \mathbf{1] ~ G e V / \mathbf { c } ^ { \mathbf { 2 } }}\right.$
- Prospects: ~20 stronger limits with full Belle II data set
- Results published in PRL: 10.1103/PhysRevLett.125.161806

Backup.

Selection variables

```
- E
    E
-37.3 }\mp@subsup{}{}{\circ}\leq\mp@subsup{0}{\gamma}{}\leq123.\mp@subsup{7}{}{\circ}\mathrm{ (barrel acceptance)
- clusterNHits > I.5
-3 most energetic \gamma
-0.88 \sqrt{}{\textrm{s}}\leq\mp@subsup{m}{\gamma\gamma\gamma}{}\leq1.03 \sqrt{}{}\textrm{s}
    (9.3I GeV/c}\mp@subsup{}{}{2}\leq\mp@subsup{m}{y\gamma\gamma}{}\leq10.90 GeV/c2
    -TimeVar* < IO
-0 good tracks
- }\Delta0\geq0.014 rad OR \Delta\varphi\geq0.4 rad
- clusterZernikeMVA of most isolated
    photon > 0.6
```

*) TimeVar $=\left|\left(t-\sum\left(t / \Delta t^{2}\right) / \sum\left(1 / \Delta t^{2}\right)\right) / \Delta t\right|$

ALPs - theory

ALPs - analysis

Two of the photons overlap or merge

Selection variables

Selection optimization via maximization of Punzi Figure of Merit (PFM)

- PFM as function of 1 variable
- Other variables fixed
- Vary cut on that variable
- For multiple ALP masses
- Repeat for all variables

One example of PFM scan:

Signal peaking

Squared diphoton mass Squared recoil mass

Background modeling

Choice of polynomial order \& fit range with reduced χ^{2} and smoothness criteria
$\cdot \mathrm{m}_{\mathrm{a}} \in[0.2,0.5] \mathrm{GeV} / \mathrm{c}^{2} \Longrightarrow 2$ nd order, fit range $\left[\mathrm{m}_{\mathrm{a}}{ }^{2}-20 \cdot \sigma_{C B}, \mathrm{~m}_{\mathrm{a}}{ }^{2}+30 \cdot \sigma_{\mathrm{CB}}\right]$

- $\mathrm{m}_{\mathrm{a}} \in\left[0.5,6.85^{*}\right] \mathrm{GeV} / \mathrm{c}^{2} \Longrightarrow 4$ th order, fit range $\left[\mathrm{m}_{\mathrm{a}}{ }^{2}-20 \cdot \sigma_{C B}, \mathrm{~m}_{\mathrm{a}}{ }^{2}+30 \cdot \sigma_{C B}\right]$
- $m_{a} \in[6.85 *, 9.7] \mathrm{GeV} / \mathrm{c}^{2} \Longrightarrow 5$ th order, fit range $\left[\mathrm{m}_{\mathrm{a}}{ }^{2}-25 \cdot \sigma_{C B}, m_{a}{ }^{2}+25 \cdot \sigma_{C B}\right]$

