

First measurements from charmless *B* decays at ² Belle II

Yun-Tsung Lai*[†] Kavli IPMU E-mail: yun-tsung.lai@ipmu.jp

We report on first measurements of branching fractions, *CP*-violating charge-asymmetries, and polarizations in various charmless *B* decays at Belle II. We use a sample of electron-positron collisions collected in 2019–2020 at the Υ (4S) resonance from the SuperKEKB collider corresponding to an integrated luminosity of 34.6 fb⁻¹. All results are consistent with known values and provide extensive validations of the detector performances and analysis strategies.

The 19th International Conference on B-Physics at Frontier Machines (BEAUTY 2020) 21-24 September, 2020 Remote conference

*Speaker. [†]On behalf of the Belle II Collaboration.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

3 1. Introduction

Charmless B decays are important to search for non-standard-model (non-SM) physics in the 4 flavor sector. Many decay channels are governed by 'penguin' amplitudes, which are sensitive to 5 non-SM contributions to the loop. Studying them in detail is an important goal of the Belle II 6 experiment. With the largest sample of e^+e^- collisions expected in the next decade, Belle II is 7 expected to improve significantly important measurements such as the determination of the CKM 8 phase α/ϕ_2 [1, 2], the precision test of of $K\pi$ isospin sum rule [1, 3], and the study of CP-violating 9 asymmetries localized in the three-body B decays' phase space [1]. In addition, the measurement 10 of decay-time dependent CP violation in the penguin-dominated $B^0 \rightarrow \phi K^0$ mode, compared with 11 corresponding results from $B^0 \rightarrow J/\psi K^0$ decays, offers a sharp probe of non-SM physics. Mea-12 surements of the longitudinal polarization fractions (f_L) of decays of B mesons into pairs of vector 13 mesons also probe non-SM dynamics. Previous measurements of f_L in $B^0 \rightarrow J/\psi K^0$ showed a 14 sizable contribution from transverse polarization, while most predictions expect the longitudinal 15 component to dominate. 16

SuperKEKB [6] is an asymmetric e^+e^+ collider, that started collision operations with the Belle II detector [7] in March 2019. We use a data sample of 34.6 fb⁻¹, which was collected at the Y(4S) resonance up to May 2020. This report presents the first measurements of branching fractions (\mathscr{B}), *CP*-violating charge-asymmetries (\mathscr{A}_{CP}), and longitudinal polarization fractions (f_L) based on the following *B* decays reconstructed in Belle II data: $B^0 \to K^+\pi^-$, $B^0 \to \pi^+\pi^-$, $B^+ \to K^+\pi^0$, $B^+ \to \pi^+\pi^0$, $B^+ \to K^0\pi^+$, $B^0 \to K^0\pi^0$, $B^+ \to K^+K^-K^+$, $B^+ \to K^+\pi^-\pi^+$, $B^0 \to \phi K^0$, $B^+ \to \phi K^+$, $B^0 \to \phi K^{*0}$, and $B^{*+} \to \phi K^{*+}$ [8, 9].

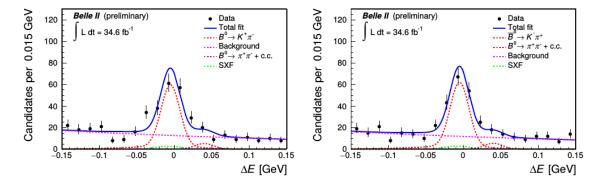
The *B* reconstruction, event seletion criteria, and background suppression strategy are studied 24 with various simulated signal and background samples. Charged-particle trajectories (tracks) are 25 identified with inner vertex detectors and a central drift chamber with requirements on the displace-26 ment from the interaction point to reduce beam-background-induced tracks. The identification of 27 charged particles uses the information from two particle-identification (PID) devices, a time-of-28 propagation counter in the barrel region and a proximity-focusing aerogel ring-image Cherenkov 29 counter in the forward endcap region. Decays of π^0 candidates are reconstructed by using two 30 isolated clusters in the electromagnetic calorimeter, with requirements on the helicity angle and 31 kinematic fit to constrain π^0 mass. Decays of K_s^0 candidates are reconstructed from two opposite-32 charge pion candidates from a common vertex, restricted to meet additional requirements on their 33 kinematic variables, e.g. momentum, flight distance, distance between pion trajectories, etc, to 34 further reduce the combinatorial background. Decays of ϕ candidates are reconstructed from two 35 opposite-charge kaon candidates. Decays of K^{*0} candidates are reconstructed from one K^+ and 36 one π^- , and decays of K^{*+} candidates are reconstructed from one K_S^0 and one π^+ . In three-body 37 decays, we suppress the relevant peaking backgrounds from charmed or charmonium intermediate 38 states by excluding the corresponding two-body mass ranges. 39

We use the following two major variables to distinguish the signal *B* events from other backgrounds: the energy difference $\Delta E \equiv E_B - \sqrt{s}/2$ between the reconstructed *B* candidate and half of the collision energy in the $\Upsilon(4S)$ frame, and beam-energy-constrained mass $M_{\rm bc} \equiv \sqrt{s/(4c^2) - (p_B^*/c)^2}$.

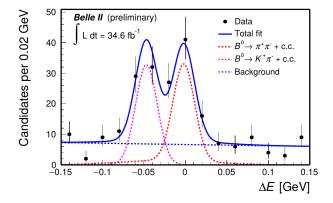
2. Continuum background suppression

One of the main challenges of the charmless B decays' reconstruction is the large combina-44 torial background with the same final state from the $e^+e^- \rightarrow q\overline{q}$ (q = u, d, s, c) processes. Signal 45 rates 10⁵ times smaller than continuum background and the lack of distinctive final-state features 46 (leptons or intermediate resonances) make the reconstruction of signal hard. A binary boosted 47 decision-tree (BDT) classifier is used to combine more than 30 variables nonlinearly. The input 48 variables to the BDT include event topology variables, flavor-tagging information, vertex-fitting 49 information, and kinematic-fit information. All of them are required to be loosely or not correlated 50 to ΔE and $M_{\rm bc}$. 51

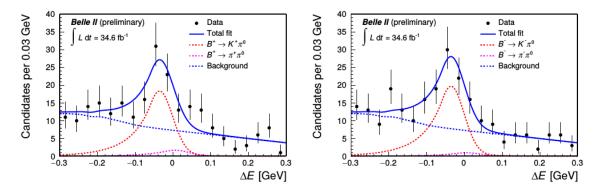
52 3. Signal extraction and measurement results

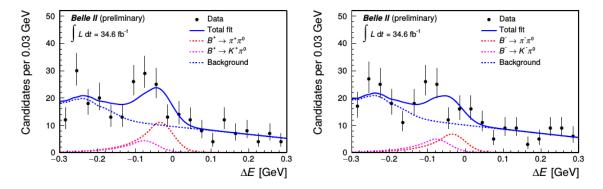

We use unbinned maximum likelihood fits to extract signal yields from the data to calculate 53 various physics observables. In the $B \to hh$ and $B \to hhh$ $(h = K \text{ or } \pi)$ analysis, only ΔE is fit 54 for events restricted to $M_{\rm bc} > 5.27 \text{ GeV}/c^2$. The fits to the two $B \rightarrow \phi K$ modes use five variables 55 including ΔE , M_{bc} , output of the continuum suppression BDT discriminator (C'_{out}), K^+K^- candi-56 date mass $(m_{K^+K^-})$, and ϕ candidate's cosine of the helicity angle $(\cos\theta_{H,\phi})$. The fits to the two 57 $B \to \phi K^*$ modes use seven variables: $K^+\pi^-$ candidate mass $(m_{K\pi})$ and K^* candidate's cosine of 58 the helicity angle $(\cos \theta_{H,K^*})$ in addition to the ones used in $B \to \phi K$ modes. By fitting data, we 59 determine the following quantities: 60

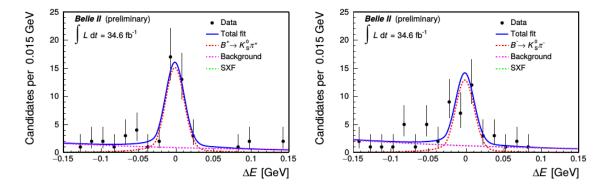
• Branching fractions: $\mathscr{B} = \frac{N}{\varepsilon \times 2 \times N_{BB}}$, where *N* is the signal yield, ε is the signal reconstruction efficiency determined from simulation and validated with control samples, and N_{BB} is the number of $B\overline{B}$ events (19.7M for B^+B^- and 18.7M for $B^0\overline{B}^0$). N_{BB} is obtained from the measured integrated luminosity, the exclusive $e^+e^- \rightarrow \Upsilon(4S)$ cross section, and $\mathscr{B}(\Upsilon(4S) \rightarrow B^0\overline{B}^0)$ [10].

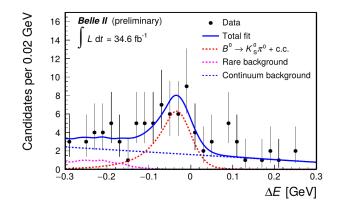

• *CP* asymmetries: The raw asymmetries are obtained as $\mathscr{A} = \frac{N(b) - N(\overline{b})}{N(b) + N(\overline{b})}$, where N(b) and $N(\overline{b})$ are the yields of the final-state meson containing *b* and \overline{b} flavors, respectively. The *CP* asymmetry is obtained by considering the instrumental effect $\mathscr{A} = \mathscr{A}_{CP} + \mathscr{A}_{det}$. $\mathscr{A}_{det}(K^+\pi^-) =$ -0.010 ± 0.003 and $\mathscr{A}_{det}(K^0_S\pi^+) = -0.007 \pm 0.022$, which are measured on large samples of $D^0 \to K^+\pi^-$ and $D^+ \to K^0_S\pi^+$ decays with negligible *CP* violation. Then, $\mathscr{A}_{det}(K^+) =$ -0.015 ± 0.022 is obtained from $\mathscr{A}_{det}(K^+) = \mathscr{A}_{det}(K^+\pi^-) - \mathscr{A}_{det}(K^0_S\pi^+) + \mathscr{A}_{det}(K^0_S)$ [11].

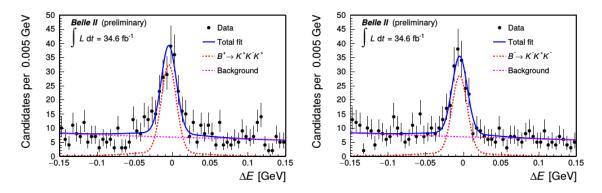
• Longitudinal polarization fractions: $f_L = \frac{N_L/\varepsilon_L}{N_L/\varepsilon_L + N_T/\varepsilon_T}$, where $N_{L(T)}$ and $\varepsilon_{L(T)}$ are the signal yield and signal reconstruction efficiency with longitudinal (transverse) polarization, respectively. The distinctive helicity-angle distributions allow for separating the two signal components.

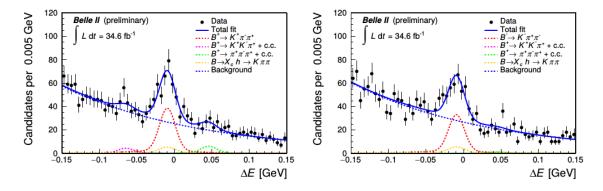

Figures 1–8 show the ΔE distributions in data for $B^0 \to K^+\pi^-$, $B^0 \to \pi^+\pi^-$, $B^+ \to K^+\pi^0$, $B^+ \to \pi^+\pi^0$, $B^+ \to K^0\pi^+$, $B^0 \to K^0\pi^0$, $B^+ \to K^+K^-K^+$, and $B^+ \to K^+\pi^-\pi^+$ decays, with fit projections overlaid. Figure 9 shows the ΔE , $M_{\rm bc}$, C'_{out} , $m_{K^+K^-}$, and $\cos\theta_{H,\phi}$ distributions in data for $B^+ \to \phi K^+$ and $B^0 \to \phi K^0$ decays, with fit projections overlaid. Figure 10 shows the ΔE , $M_{\rm bc}$, C'_{out} , $m_{K^+K^-}$, $\cos\theta_{H,\phi}$, $m_{K\pi}$, and $\cos\theta_{H,K^*}$ distributions in data for $B^+ \to \phi K^{*+}$ and $B^0 \to \phi K^{*0}$ decays, with fit projections overlaid. The major systematic uncertainties come from tracking, PID,
and fit modelling. All the measurement results are summarized in Table 1.

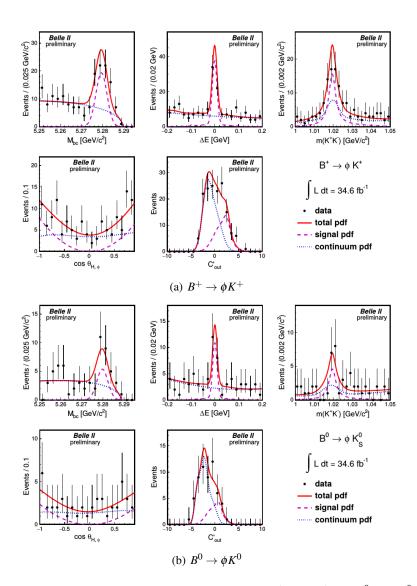

Figure 1: Distribution of ΔE for $B^0 \to K^+\pi^-$ (left) and $\overline{B}^0 \to K^-\pi^+$ (right) decays with fit projections overlaid.


Figure 2: Distribution of ΔE for $B^0 \rightarrow \pi^+\pi^-$ decays with fit projections overlaid.


Figure 3: Distribution of ΔE for $B^+ \to K^+ \pi^0$ (left) and $B^- \to K^- \pi^0$ (right) decays with fit projections overlaid.


Figure 4: Distribution of ΔE for $B^+ \to \pi^+ \pi^0$ (left) and $B^- \to \pi^- \pi^0$ (right) decays with fit projections overlaid.


Figure 5: Distribution of ΔE for $B^+ \to K_S^0 \pi^+$ (left) and $B^- \to K_S^0 \pi^-$ (right) decays with fit projections overlaid.


Figure 6: Distribution of ΔE for $B^0 \to K_S^0 \pi^0$ decays with fit projections overlaid.

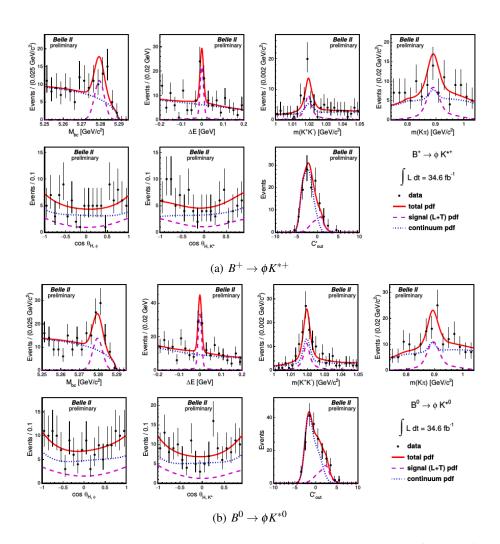

Figure 7: Distribution of ΔE for $B^+ \to K^+ K^- K^+$ (left) and $B^- \to K^- K^+ K^-$ (right) decays with fit projections overlaid.

Figure 8: Distribution of ΔE for $B^+ \to K^+ \pi^- \pi^+$ (left) and $B^- \to K^- \pi^+ \pi^-$ (right) decays with fit projections overlaid.

Figure 9: Distribution of ΔE , M_{bc} , C'_{out} , $m_{K^+K^-}$, and $\cos\theta_{H,\phi}$ for $B^+ \to \phi K^+$ and $B^0 \to \phi K^0$ decays with fit projections overlaid.

Figure 10: Distribution of ΔE , M_{bc} , C'_{out} , $m_{K^+K^-}$, $\cos\theta_{H,\phi}$, $m_{K\pi}$, and $\cos\theta_{H,K^*}$ for $B^+ \to \phi K^{*+}$ and $B^0 \to \phi K^{*0}$ decays with fit projections overlaid.

 Table 1: Summary of measurement results. The first uncertainties are statistical and the second ones are systematic.

Mode	$\mathscr{B}(10^{-6})$	\mathcal{A}_{CP}	f_L
$B^0 o K^+ \pi^-$	$18.9 \pm 1.4 \pm 1.0$	$0.030 \pm 0.064 \pm 0.008$	-
$B^0 o \pi^+\pi^-$	$5.6^{+1.0}_{-0.9}\pm0.3$	-	-
$B^+ o K^+ \pi^0$	$12.7^{+2.2}_{-2.1}\pm 1.1$	$0.052^{+0.121}_{-0.119}\pm0.022$	-
$B^+ o \pi^+ \pi^0$	$5.7 \pm 2.3 \pm 0.5$	$-0.268^{+0.249}_{-0.322}\pm0.123$	-
$B^+ o K^0 \pi^+$	$21.8^{+3.3}_{-3.0}\pm2.9$	$-0.072^{+0.109}_{-0.114}\pm0.024$	-
$B^0 o K^0 \pi^0$	$10.9^{+2.9}_{-2.6}\pm1.6$	-	-
$B^+ \rightarrow K^+ K^- K^+$	$32.0 \pm 2.2 \pm 1.4$	$-0.049 \pm 0.063 \pm 0.022$	-
$B^+ o K^+ \pi^- \pi^+$	$48.0 \pm 3.8 \pm 3.3$	$-0.063 \pm 0.081 \pm 0.023$	-
$B^0 o \phi K^0$	$5.9 \pm 1.8 \pm 0.7$	-	-
$B^+ o \phi K^+$	$6.7 \pm 1.1 \pm 0.5$	-	-
$B^0 o \phi K^{*0}$	$11.0 \pm 2.1 \pm 1.1$	-	$0.57 \pm 0.20 \pm 0.04$
$B^{*+} o \phi K^{*+}$	$21.7 \pm 4.6 \pm 1.9$	-	$0.58 \pm 0.23 \pm 0.02$

4. Summary

Belle II reports first measurements in charmless *B* decays with a data sample corresponding to 34.6 fb⁻¹. The measurements include branching fractions, *CP* asymmetries, and longitudinal polarization fractions. All the results are in agreement with the known values, and offer good validations on the detector performance and analysis strategies.

88 References

- [1] E. Kou *et al.* (Belle II Collaboration), PTEP **2019** (2019) no.12, 123C01, arXiv:1808.10567 [hep-ex].
- 90 [2] M. Gronau and D. London, Phys. Rev. Lett. 65 (1990) 3381.
- 91 [3] M. Gronau, Phys. Lett. B 627 (2005) no. 1, 82-88.
- 92 [4] A. L. Kagan, Phys. Lett. B 601 (2004) no. 3 151-163.
- ⁹³ [5] M. Beneke, J. Rohrer, and D. Yang, Phys. Rev. Lett. **96** (2006) 141801.
- 94 [6] K. Akai et al., Nucl. Instrum. Meth. A 907 (2018) 188-199.
- 95 [7] T. Abe *et al.* (Belle II Collaboration), arXiv:1011.0352 [hep-ex].
- 96 [8] F. Abudinén (Belle II Collaboration), arXiv:2009.09452 [hep-ex].
- 97 [9] F. Abudinén (Belle II Collaboration), arXiv:2008.03873 [hep-ex].
- [10] A. J. Bevan *et al.* (Belle and BaBar Collaborations), Eur. Phys. J. C74 (2014) 3026, arXiv:1406.6311
 [hep-ex].
- 100 [11] A. Davis *et al.* (LHCb Collaboration), [LHCb-PUB-2018-004].