Preparing for Success
Searching for a Heavy Non-$q\bar{q}$ Meson in $\Upsilon(6S)$ Decays at Belle II

Shanette De La Motte

Master of Science Candidate
School of Physics
THE UNIVERSITY OF MELBOURNE
Victoria 3010

Under the Supervision of
Professor Geoffrey Taylor

Thesis submitted October 20th 2017, in partial requirement to the Master of Science (Physics)
Abstract

While $q\bar{q}$ mesons and $qqq$ baryons are ubiquitous in particle physics, the higher order $qq\bar{q}q$ mesons and $qqqq\bar{q}$ baryons are rarely seen, despite being completely allowed by quantum chromodynamics. In 2016, an analysis using data collected with the Belle detector at the KEKB asymmetric $e^+e^-$ collider found evidence for a $qq\bar{q}q$ meson of 10610 MeV, referred to as $Z_b^+(10610)$, in $\Upsilon(6S)$ decays. We perform an MC analysis of $\Upsilon(6S) \rightarrow [Z_b^+(10610) \rightarrow \pi^+b(1P')\pi^-]$ and relevant continuum events to assess how to best see this $qq\bar{q}q$ candidate in the upcoming sequel experiment, Belle II. We are able to measure the $Z_b^+$ using pion recoil mass distributions within error of the recorded invariant mass, for both Phase II and Phase III of Belle II detector geometries. We also improve upon the continuum suppression techniques implemented in the 2016 analysis, first by implementing a better selection criterion based on Fox-Wolfram moment, R2, and secondly by using TMVA toolkit to consider a set of continuum suppression selection criteria.

Statement of Originality

Chapter 1 is a review of relevant exotic QCD literature and previous exotic experiments.
Chapter 2 is a review of the Belle II Detector, based on design reports and letters of intent.
Chapter 3, 4 and 5 contain an original analysis based on MC created by the Belle II Collaboration.

Acknowledgements

It takes a village to raise a child. This thesis is a reflection not only of my efforts, but of those who have supported me.
Firstly, to Professor Geoff Taylor, for taking me under his wing as my Masters supervisor. Thanks for the scotch and fountain pen advice. Dr. Phill Urquijo’s generous experimental intuition has also been invaluable to this analysis
Secondly, to my hermano, Rob “Boston Rob” Muñoz. You’re the best thing to come out of Queensland, I’m so glad to have shared a supervisor with you.
Thirdly, to Cate Macqueen. You are a fantastic physicist and my physics life better for having you in it. I want to be you when I grow up
My page count does not allow for me to name every member of Shanette Village, but the largest amount of thanks goes to Scott Williams. His support was comprehensive over the two years of this Masters degree, whether it be bringing raisin toast when I couldn’t bring myself to cook, a lift home on when I was lazy, or every single time he forced me out of bed. It was with his support that I succeed in completing this thesis. Also, thanks to him for building layer 3 of the SVD.
# Introduction

1. Hadronic Substructure: Quantum Chromodynamics .......................................................... 2
2. Exotic Hadrons and Current Models .................................................................................. 3
3. Belle’s Next Heavy Non-$q\bar{q}$ Meson: $Z^+_b (10610)$ ....................................................... 5
4. The Role of this Analysis .................................................................................................. 8

# SuperKEKB and the Belle II Detector: Hardware of the Belle II Experiment ........................................ 10

2.1 The SuperKEKB Collider .................................................................................................. 10
2.2 Subdetector Components of the Belle II Detector ............................................................ 11
2.3 Detector Commissioning Schedule .................................................................................. 13

# Monte Carlo Simulation of $Z^+_b$ and Background Processes in $\Upsilon(6S)$ Decays ............................ 15

3.1 MC Generation and Analysis Strategy .............................................................................. 15
3.2 Signal MC ....................................................................................................................... 16
3.3 Background MC .............................................................................................................. 18

# From Pions to New Particles: Reconstructing and Optimising the $Z^+_b$ Signal ......................... 23

4.1 Preselection and Reconstruction ...................................................................................... 23
4.2 Selection Criteria ............................................................................................................. 24
4.3 Multivariate Analysis with TMVA .................................................................................. 30
4.4 After the Cuts ................................................................................................................. 34

# Fitting the Results ............................................................................................................. 39

5.1 Fitting the Signal MC ..................................................................................................... 39
5.2 Fitting the Background MC ........................................................................................... 40
5.3 Systematic Errors ............................................................................................................ 40

# The Future: To $q\bar{q}q\bar{q}$ and Beyond .............................................................................. 45
Chapter 1

Introduction

The quark model was born of the need for a elegant and compact description of matter. At the beginning of the 1960s, the increasing sophistication in accelerator physics led to the discovery of an enormous number of new particles, beyond the known atomic constituents of electrons, protons and neutrons. Physicists famously doubted that such independence of such a large set of particles, but struggled to reconcile this with a self consistent theory.

Both Murray Gell-Mann and George Zweig are indepdently credited for the quark model in 1964. [1][2]. This formalism treated the newly discovered particles as composite, made of spin-1/2, point-like particles now known as quarks. Common properties between the newly discovered particles could now be explained as similarities in quark components. With the quark model, mesons and baryons were prescribed a quark-based meaning that was consistent with their previously defined spin-statistics and baryon numbers. Leptons remained fundamental, while mesons and baryons were hadronic, consisting of a quark-antiquark pair or quark triplet, respectively. This drastically reduced the number of degrees of freedom in massive particles and the similarities between them could now be explained in terms of their underlying quark content.

While the $qq\bar{q}$ mesons and $qqq$ baryon models proposed have since been heavily supported by experiment, it is less known $qq\bar{q}\bar{q}$ and $qqqq\bar{q}$ quark groupings were also introduced by Gell-Mann. Referred to as exotic hadrons, these states possess spin and baryon number consistent with an abstracted definition of meson and baryon. Despite the fact that Gell-Man’s 50 year old inception requires no newer physics than what was proposed in the quark model, the exotic hadrons are rarely seen experimentally.

<table>
<thead>
<tr>
<th>QUARKS</th>
<th>LEPTONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Spin-1/2</strong></td>
<td><strong>Spin-1/2</strong></td>
</tr>
<tr>
<td><strong>Flavour</strong></td>
<td><strong>Flavour</strong></td>
</tr>
<tr>
<td>$u$</td>
<td>$e$</td>
</tr>
<tr>
<td>$d$</td>
<td>$\nu_e$</td>
</tr>
<tr>
<td>$c$</td>
<td>$\mu$</td>
</tr>
<tr>
<td>$s$</td>
<td>$\nu_\mu$</td>
</tr>
<tr>
<td>$t$</td>
<td>$\tau$</td>
</tr>
<tr>
<td>$b$</td>
<td>$\nu_\tau$</td>
</tr>
</tbody>
</table>

Figure 1.1: Table of fundamental fermions[3]. Quarks have both colour and electric charge, while a lepton’s electric charge is negative or neutral, with no colour. As fundamental particles, they are pointlike and thus below the wavelength of visible light. The term ‘colour’ is merely a label.

This thesis will construct an analysis, based on the simulation of an upcoming particle physics experiment, to shed light on the previously seen $qq\bar{q}\bar{q}$ meson candidate, $Z_{610}^+(10610)$. If confirmed, this particle will stand as a blatant example of a non-$q\bar{q}$ meson and motivate the high energy physics community to address a long unanswered question; if exotic hadrons are to exist with the same physics as generic ones, why have decades of high energy experiments observed almost exclusively 2 and 3-quark hadrons, leaving higher order hadrons relatively unseen?
Figure 1.2: Table of hadrons. It was once sufficient to classify particles by their spin (fermionic or bosonic) and the Greek term for the approximate mass symmetry they belonged to; leptóns, mesóns, baryóns or small, intermediate and large. These terms were redefined within the quark model.

1.1 Hadronic Substructure: Quantum Chromodynamics

To appreciate the structure of exotic hadrons, it is important to review the structure of conventional hadrons. Quantum Chromodynamics (QCD) is the Quantum Field Theory (QFT) that describes the internal binding forces and structure of hadrons, in terms of their constituent quarks. QCD was motivated by the existence of the spin-3/2 $\Omega^-$ baryon, whose $s^3$ composition seemingly required three $s$ quarks in the exact same quantum state. As fermions, this was forbidden by the Pauli Exclusion Principle and a new quantum number was invoked to demarcate the three $s$ quarks: the colour charge. Each $s$ quark was assigned a colour charge, alongside it’s electric charge; the charges are referred to as red, blue and green. The existence of 3 charges is one of the key features that lead to the complexity of QCD.

As a subgroup of the Standard Model (SM) formalism, QCD shares some behaviours with the other two underlying gauge theories, Quantum Electrodynamics (QED) and the weak interaction. It’s gauge bosons are a set of 8 massless spin-1 gluons, which mediate the interaction between particles that possesses the QCD conserved charge, the aforementioned colour charge. It’s dynamics are referred to as the strong force named after it’s strength over the electric force in short-range quark interactions.

Exploring the mathematics that underpin QCD emphasises it’s peculiarities as a SM gauge group. The requirement of 3 charges (rather than 1, as per QED and the weak interaction) leads to an $SU(3)$ group structure. To achieve a colour neutral state, quarks can combine with equal proportions of all colour charges to form a traditional baryon $q^r q^b q^g$. They may also combine with antiquarks, their antiparticles which possess the opposing “anti-color” quantum number to form a traditional meson $q^c \bar{q}^c$, where $c \in \{r, b, g\}$, with anticolour implied. As the $SU(3)$ group is also non-Abelian, QCD has an octet of gauge bosons that hold the group charges themselves, as outlined in Figure 1.3.

Due to the aforementioned differences between the other SM subgroups, QCD exhibits two unique phenomena: colour confinement and asymptotic freedom. These are results of the energy-dependent strong coupling in contrasting regimes; the gluon potential is strongly confining of colour-charges as the energy is lowered, while at increasing energies the coupling is expected to asymptotically approach zero. Thus, quarks and gluons are restricted to colour neutral combinations; all searches for unbound quarks and gluons having null results[3]. At much higher energies however, such as that of the early universe, the strong coupling is diminished enough to allow for a “quark-gluon plasma” state.
<table>
<thead>
<tr>
<th>Gluons</th>
<th>Spin-1</th>
<th>Colour state</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \lambda_1 )</td>
<td>( \frac{1}{\sqrt{2}} (RB + BR) )</td>
<td>[ \begin{bmatrix} 0 &amp; 1 &amp; 0 \ 1 &amp; 0 &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} ]</td>
</tr>
<tr>
<td>( \lambda_2 )</td>
<td>( \frac{1}{\sqrt{2}} (RB - RB) )</td>
<td>[ \begin{bmatrix} 0 &amp; 0 &amp; 1 \ 0 &amp; 0 &amp; 0 \ 0 &amp; 1 &amp; 0 \end{bmatrix} ]</td>
</tr>
<tr>
<td>( \lambda_3 )</td>
<td>( \frac{1}{\sqrt{2}} (\bar{B}B - B \bar{B}) )</td>
<td>[ \begin{bmatrix} 0 &amp; 0 &amp; -i \ 0 &amp; 0 &amp; 0 \ i &amp; 0 &amp; 0 \end{bmatrix} ]</td>
</tr>
<tr>
<td>( \lambda_4 )</td>
<td>( \frac{1}{\sqrt{2}} (G \bar{R} + GR) )</td>
<td>[ \begin{bmatrix} 0 &amp; 0 &amp; 0 \ 0 &amp; 0 &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} ]</td>
</tr>
<tr>
<td>( \lambda_5 )</td>
<td>( \frac{1}{\sqrt{2}} (G \bar{G} - G \bar{G}) )</td>
<td>[ \begin{bmatrix} 0 &amp; 0 &amp; 0 \ 0 &amp; 0 &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} ]</td>
</tr>
<tr>
<td>( \lambda_6 )</td>
<td>( \frac{1}{\sqrt{2}} (B \bar{G} + GB) )</td>
<td>[ \begin{bmatrix} 1 &amp; 0 &amp; 0 \ 0 &amp; 1 &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} ]</td>
</tr>
<tr>
<td>( \lambda_7 )</td>
<td>( \frac{1}{\sqrt{2}} (\bar{R} \bar{R} - B \bar{B}) )</td>
<td>[ \begin{bmatrix} 1 &amp; 0 &amp; 0 \ 0 &amp; 1 &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} ]</td>
</tr>
<tr>
<td>( \lambda_8 )</td>
<td>( \frac{1}{\sqrt{3}} (\bar{R} \bar{R} + B \bar{B} - 2G \bar{G}) )</td>
<td>[ \begin{bmatrix} 1 &amp; 0 &amp; 0 \ 0 &amp; 1 &amp; 0 \ 0 &amp; 0 &amp; 0 \end{bmatrix} ]</td>
</tr>
</tbody>
</table>

(a) Quark-quark-gluon  
(b) Gluon 3-vertex  
(c) Gluon 4-vertex

Figure 1.3: List of gluon colour charges, in the Gell-Mann Matrix normalisation. Gluons transform as an octet under SU(3) transformations.

\[ \mathcal{L}_{QCD} = -\frac{1}{4} G^{\alpha \beta}_{i} G^{\alpha \beta}_{i} \bar{q}_{i} (i \gamma_{\mu} D_{\mu} - m)_{ij} q_{j} \]

Figure 1.4: QCD Lagrangian, which describes the dynamics of quarks (\( q_{i} \)). \( G^{\alpha \beta}_{i} \) represents the gluon field strength tensor, \( G^{\alpha \beta}_{i} = \partial_{\alpha} A^{\beta}_{i} - \partial_{\beta} A^{\alpha}_{i} - g f^{\alpha \beta \gamma}_{i} A^{\gamma}_{j} \), with gluon field \( A^{\alpha}_{i} \).

1.2 Exotic Hadrons and Current Models

With knowledge of the quark-gluon interactions that give rise to standard hadrons, we can now progress to exotic hadrons. The challenge of establishing exotica is two-fold. First, observations of non-\( q \bar{q} \) or non-\( qqq \) candidates are generally too rare to establish statistical significance. Secondly, with so few statistics, it is difficult to test the numerous theoretical models of their structure. While this thesis will focus on non-\( q \bar{q} \) mesons, below we discuss other exotic hadron candidates for completeness. These are sorted according to their theoretical model. The discussion of the Belle Collaboration’s contribution to exotic hadrons is reserved for Section 1.3.

1.2.1 Models of non-\( q \bar{q} \) Mesons

Both exotic and standard mesons have the following generalised meson properties:

- They have baryon number 0 (\( B = 0 \))
- Their constituents charged under QCD. Their overall charge sum is colourless.
- They have an even number of quarks (As \( B = \frac{1}{3}(n_{q} - n_{\bar{q}}) = 0 \) and \( n_{q} + n_{\bar{q}} = n_{\text{tot}} \implies n_{q} = n_{\bar{q}} \implies n_{\text{tot}} \) is even)
- They have integer spin (\( n_{\text{tot}} = n_{\uparrow} + n_{\downarrow} \) is even \( \implies n_{\uparrow} - n_{\downarrow} \) is even \( \implies S = \frac{1}{2}(n_{\uparrow} - n_{\downarrow}) \) is an integer)
\[3 \otimes \bar{3} = 1 \oplus 8\]
\[3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = 2(1) \oplus 4(8) \oplus 10 \oplus \bar{10} \oplus 27\]
\[3 \otimes 3 \otimes 3 \otimes 3 \otimes \bar{3} = 5(1) \oplus 16(8) \oplus 10(10) \oplus 5(\bar{10}) \oplus 9(27) \oplus 28 \oplus 5(35)\]
\[3 \otimes 3 \otimes 3 \otimes 3 \otimes 3 \otimes 3 = 6(1) \oplus 17(8) \oplus 7(10) \oplus 7(\bar{10}) \oplus 9(27) \oplus 2(35) \oplus 2(35) \oplus 64\]

Figure 1.6: Allowable mesons. Quarks transform as triplets (irreducible representation 3, or \(\bar{3}\) for antiquarks) in SU(3). Taking the direct product of the representations demonstrates which combinations can form mesons, as confinement suggests only colourless (SU(3) irreducible representation 1) hadrons can propagate.

**Mesons with Quarks**

Figure 1.6 demonstrates how the states \(qq\bar{q}q\), \(qqqqq\) and \(qqq\bar{q}qq\) classify as exotic mesons. The four-quark state, \(qqq\bar{q}qq\) can be described with one of three models: as a compact tetraquark, as hadroquarkonium or as a mesonic molecule [4].

The compact tetraquark model involves four quarks bound by gluon exchange. More specifically, rather than each quark bound to each of the three other quark, we understand the compact tetraquark to exist due to a gluon exchanged between diquarks and antiquarks. While a diquark \((3 \otimes 3 = 3 \oplus 6)\) and an antidiquark \((\bar{3} \otimes \bar{3} = 3 \oplus 6)\) do not contain a colour singlet alone, together they build up \([qq]_3[\bar{q}\bar{q}]_3 = [qqq\bar{q}qq]_1\), demonstrated by line 2 of 1.6. The compact tetraquark is a suggested model of some light scalar mesons, such as \(J_0(980)\) existing as a molecule of \(B\)-mesons.

Confirming this structure can prove difficult, as sub-GeV mass allows for relativistic mixing, where an \(SU(3)\) flavour symmetry may be more pertinent than fixed constituents.

The hadroquarkonium model is inspired by the quarkonium-like discoveries in heavy-flavour physics. It is modelled as quarkonium in a “cloud” of light hadronic matter. Exotica such as \(Z^+\) (4430) may be considered consistent with this model, where it’s confirmed minimal quark content \(c\bar{c}ud\) could be arranged as \(\psi(2S)\pi^+\), explaining how it acts as charmonium and acts with electric charge. The quarkonium-excited light hadron bond is thought to be a QCD analogue to the van der Waals force of Chemistry, where temporary and localised net colour charges in each hadron that may allow for gluon exchange.

The mesonic molecule model suggests that four-quark states can be made with two \(qq\) pairs bound via pseudoscalar mesons. This is a result of the same residual strong force that binds the protons and neutrons in atomic nuclei. This state is inspired by the “baryonic molecule” deuteron, the nucleus of hydrogen-2 isotope. Deuteron consisting of a proton and a neutron thus being the only stable atomic nuclei. This state is inspired by the “baryonic molecule” deuteron, the nucleus of hydrogen-2 isotope.

The compact tetraquark is a suggested model of some light scalar mesons, such as \(J_0(980)\) existing as a molecule of \(B\)-mesons.

This model is popular in characterising the \(Z^+_b\) (10610), the exotic state whose existence will be the focus of this thesis. As will be discussed further in Section 1.3, \(Z^+_b\) (10610) decays via the strong force, predominantly to mixture of \(B^+\bar{B}^{*0}\) and \(B^{++}\bar{B}^{*0}\)[7]. This, as well it’s 10610 MeV mass being suspiciously close to the sum of \(B^+\) and \(B^*\) suggests that \(Z^+_b\) (10610) exists as a molecule of B-mesons.

\[8 \otimes 8 = 1 \oplus 2(8) \oplus 10 \oplus \bar{10} \oplus 27\]
\[8 \otimes 8 \otimes 8 = 2(1) \oplus 8(8) \oplus 4(10) \oplus 4(\bar{10}) \oplus 6(27) \oplus 2(35) \oplus 64\]
\[8 \otimes 8 \otimes 8 \otimes 8 = 8(1) \oplus 32(8) \oplus 20(10) \oplus 20(\bar{10}) \oplus 3(27) \oplus 2(28) \oplus 2(\bar{28}) \oplus 15(35) \oplus 15(\bar{35}) \oplus 12(64) \oplus 3(81) \oplus 3(\bar{81}) \oplus 125\]
\[3 \otimes 3 \otimes 8 = 1 \oplus 3(8) \oplus 10 \oplus \bar{10} \oplus 27\]

Figure 1.7: Allowable mesons, with gluon constituents. Gluons transform as octets (irreducible representation 8) in SU(3). Colourless (SU(3) irreducible representation 1) can be obtained as the cross product of any number of gluons, or even as a quark-gluon hybrid.
Mesons with Gluons

In a departure from the quark model that not even Gell-Mann pondered, QCD permits bound states of all colour charged states, including the gluon. As a gluon posses a sum of colour charges, outlined in Figure 1.3, combination with gluons of opposite colour charges can result in a colour neutral state such as $g_r b \bar{b} g$ or $g_r b \bar{b} g g$. These states are referred to as glueballs and can be labelled as exotic mesons, as the combination of spin-1 bosons gives an integer spin state. Experimentally, a glueball candidate can be demarcated from a conventional meson of the same spin upon inspection of quantum numbers, where a $gg$ glueball can possess $J^{PC} = 0^{++}$, a non-allowed combination for $q \bar{q}$ mesons. The hybrid state, $q \bar{q} g$ is modelled as a $q \bar{q}$ state with persistent gluon, which can also posseses a non allowed quantum number combination, $J^{PC} = 1^{-+}$. The GlueX experiment, a fixed-beam target experiment taking place at Jefferson Lab Virginia, intends to look for persistent gluonic excitations, coupled to quarks as hybrids or as pure glueballs, as suggested by the non-allowed quantum number combinations. [8]

1.2.2 Models of non-$qqq$ Baryons

Both exotic and standard baryons have the following generalised baryon properties.

- They have baryon number 1 ($B = 1$, or $B = -1$ for antibaryons )
- They are made of quarks whose charge sum is colourless.
- They have odd number of quarks (As $B = \frac{1}{3}(n_q - n_{\bar{q}}) = 1$ and $n_q + n_{\bar{q}} = n_{tot} \implies n_q = 3 + n_{\bar{q}}$ and $n_{tot} = 2n_q + 3$)
- They half-integer spin ($n_{tot} = n_\uparrow + n_\downarrow$ is odd $\implies n_\uparrow - n_\downarrow$ is odd $\implies S = \frac{1}{2}(n_\uparrow - n_\downarrow)$ is a half-integer)

$$3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$$
$$3 \otimes 3 \otimes 3 \otimes 3 \otimes 3 = 3(1) \oplus 8(8) \oplus 4(10) \oplus 2(10) \oplus 3(27) \oplus 35$$

Figure 1.8: Allowable baryons

Pentaquarks

Non-$qqq$ baryons have enjoyed the most recent success. In 2016, the LHCb collaboration published their observation of the existence of the first pentaquarks, occurring as intermediate resonances in $\Lambda^0_b \rightarrow J/\psi p\pi^-[9]$ and $\Lambda^0_b \rightarrow J/\psi pK^-[10]$. The resonances, labelled as $P_c^+(4380)$ and $P_c^+(4450)$ achieved statistical significance of 9$\sigma$ and 12$\sigma$ respectively, therefore being credited as a discovery. Similar to the explanation of the $Z_b^+(10610)$ composition above, both pentaquarks gave away their constituents via a flavour-conserving strong decay, $P_c^+(4XX) \rightarrow J/\psi p$, thus consisting of $uudc\bar{c}$. While successful in experiment, it too waits for substructure classification. Pentaquarks can also be modelled as either compact, as a bag of 5 quarks connected gluon exchange, or in a “molecular” arrangements, as a baryon and meson bound by a pseudoscalar exchange.

1.3 Belle’s Next Heavy Non-$q\bar{q}$ Meson: $Z^+_b(10610)$

Currently, the most cited paper published by the Belle Collaboration is the first practical evidence of an exotic hadron candidate [11]. Taking place at the the asymmetric energy particle accelerator $KEKB$ in Tsukuba,
Japan, electron and positrons were collided at centre of mass (COM) energy equivalent $\Upsilon(4S)$ mesons. $\Upsilon(4S)$ is a 10580 MeV $b\bar{b}$ meson with a 96% branching fraction to $B\bar{B}$ pairs. This earned the accelerator the title of B-factory, as it was designed to provide a surplus of $B\bar{B}$ charge parity violation (CPV) in charge conjugates pairs, $B\bar{B}$.

Despite having no intention in QCD exotica, the serendipitous 2003 observation of exotica candidate $X(3872)$ was found as an intermediate resonance in $B^\pm \rightarrow K^\pm \pi^+\pi^-J/\psi$, as $B^\pm \rightarrow K^\pm X(3872)$ and $X(3872) \rightarrow \pi^+\pi^-J/\psi$. Due to the heavy mass of the charm quark, charmonic resonances ($c\bar{c}$ mesons) are non-relativistic and could be easily predicted by considering allowable angular momentum quantum numbers. At the time, charmonium physics consisted of looking for the predicted, but unobserved charmonia that possess these quantum numbers, of which Belle’s $X(3872)$ was expected to belong. However, the titular mass of 3872 MeV was not consistent with mass predictions with the allowable spin quantum numbers for $c\bar{c}$ mesons. Deviating further from being characterised as $c\bar{c}$, the sum of $D$ and $D^*$ meson masses was within the calculated error on the observed $X(3872)$ mass, as if $X(3872)$ acted as a single meson with the structure of two. It was for this reason that $X(3872)$ was thought to not be a $q\bar{q}$ meson, but a bound state with the same composition as $D\bar{D}^*$.

The Belle experiment championed the search for exotic mesons, obtaining the first evidence for other 4-quark candidates in its run between 1999 to 2010. Exotica in the heavy-quark sector have proved more lucrative than searches for states such as $\pi\pi$ or the sub-GeV states detailed earlier, whose relativistic behaviour make determining minimum quark content difficult. Heavy exotica candidates at Belle have included $Z_{c}(3900)$, $Z(4430)$ and the subject of this thesis, the $Z_{b}^{+}(10610)$ and its higher order version $Z_{b}^{++}(10650)$. The $Z_{b}^{+}(106XX)$ states, where the 10610 MeV version has higher statistical significance, is the front runner amongst other non-$q\bar{q}$ candidates. For reasons explained below, it must be bottomonium-like(containing $b\bar{b}$ and mesonic by conservation laws but also exhibit a net charge and isospin. If these attributes truly exist simultaneously in $Z_{b}^{+}$ mesons, this suggests it’s minimal quark content is $u\bar{d}b\bar{b}$.

We intend to construct our own analysis to find $Z_{b}^{+}(10610)$ in Belle II data, a sequel experiment set to take place with upgrade to the KEKB collider. We first review below the two papers which discuss the methods by which the first observations of this non-$q\bar{q}$ candidate were made.

1.3.1 2011: Observation of two charged bottomonium-like resonances in $\Upsilon(5S)$ Decays

Further to investigating $\Upsilon(4S) \rightarrow B\bar{B}$ during the Belle experiment, physics runs were also conducted at COM energy corresponding to the higher order $\Upsilon(5S)$ resonance, whose larger mass of 10860 MeV was over threshold to decay to and thus measure CPV in $B_s\bar{B}_s$ pairs. However, during such runs, measurements of the branching fraction of $\Upsilon(5S)$ decay equation 1.10a branching fractions were surprisingly two orders of magnitude larger than decays from $\Upsilon(4S)$, suggesting an intermediate decay contribution not present in $\Upsilon(4S)$. This anomaly
motivated investigation into dipion decays of Υ(5S) to lower order Υ(mS), as well opposite parity bottomonium state $h_b(nP)$ shown in equation 1.10b.

$$e^+e^- \rightarrow \Upsilon(5S) \rightarrow \Upsilon(mS)\pi^+\pi^- \quad e^+e^- \rightarrow \Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$$

(a) For $m=1,2,3$  \hspace{1cm} (b) For $n=1,2$

Figure 1.10: $\Upsilon(5S)$ dipion decays of interest. The $Z_b^+$ resonance was present in both process, as the same mass.

The 2011 analysis looked for exotic contributions by conducting a substructure analysis on $\Upsilon(5S)$ data taken from Belle, consisting of three $\Upsilon(mS)$ and two $h_b(nP)$ decay paths. For $\Upsilon$ path substructure, the method employed was to combine pairs of decay products and evaluate this invariant mass for each event. A true three-body decay would not favour one pairing over another, while any biases in pairing might suggest a two-stage decay with an intermediate resonance. To calculate the required invariant masses, $\Upsilon(mS)\pi^+$ and $\pi^+\pi^-$, directly detected pion energies were simple to apply, while $\Upsilon(mS)$ candidates required a “bottom-up” reconstruction from directly detected muons via $\Upsilon(mS) \rightarrow \mu^+\mu^-$. Evaluating the invariant masses for the $h_b$ path is more nebulous, as this bottomonium decays to a photon and $\eta_b$, which itself has poorly defined branching ratios. As such, the “top-down” recoil method must be used to consider any intermediate contributions to this path, to calculate $M_{h_b\pi^\pm}$ as explained in fig 1.11.

$$P_{e^+} + P_{e^-} = P_{\Upsilon(5S)} \quad \Rightarrow \quad P_{h_b(mS)} + P_{\pi^\pm} = P_{e^+} + P_{e^-} - P_{\pi^\pm} = P_{\text{rec, } \pi^\pm} \quad \text{Definition of the four-momentum recoiling from final state particle } f, \text{ originating from initial particles } i$$

$$\text{Definition of recoil mass is in the right, an important quantity in this thesis.}$$

The results from Figure 1.12 across the 5 channels are consistent with two intermediate resonance, rather than a direct 3 body decay. These twin peaks, which averaged across the 2 $h_b$ paths and 3 $\Upsilon$ paths, have mass $M_1 = 10607.2 \pm 2.0 \text{MeV}/c^2$, $\Gamma_1 = 18.4 \pm 2.4 \text{MeV}$ and $M_1 = 10652.2 \pm 1.5 \text{MeV}/c^2$, $\Gamma_1 = 11.5 \pm 2.2 \text{MeV}$. Respectively, these were labelled $Z_b(10610)$ and $Z_b(10650)$. The magnitude of the twin peaks exceed 10σ in statistical significance for all $\Upsilon$ channels, $16\sigma$ in $h_b(1P)$ and $5.6\sigma$ in $h_b(2P)$. With such uncertainties, this study can be considered the first observation of $Z_b(10610)$ and $Z_b(10650)$ and confirmation of the cascading $\Upsilon(5S) \rightarrow Z_b\pi^\pm \rightarrow (b\bar{b})\pi^+\pi^-$ decay.

As an intermediate particle in a cascade decay, the quantum numbers of the $Z_b$ resonances are fixed by the $\Upsilon(5S)$ mother particle and the bottomonium and pion final products. Isospin, beauty quantum number $(n_q-n_{\bar{q}}$, where $q=b)$, J−spín and electric charge are conserved overall, all indicative of a strong decay process. In this way, the $Z_b$ can be deemed to carry isospin and charge opposite to that of its partnered pion, to conserve $Q=0$ and $I=0$ of $\Upsilon(5S)$. Therefore, as a spin-1 particle, $Z_b$ could have $(qq\bar{q})^{\pm}$ structure, where $q$ must be an isospin-carrying quark, either $u$ or $d$. However if one instead considers beauty, the decay to $h_b$ suggests $b\bar{b}$ structure. As all bottomonia are strictly $b\bar{b}$, thus chargeless and isospin zero, the aforementioned attributes are not possible within ordinary $qq\bar{q}$ mesons. If one however employs the exotic definition of the meson, as the Belle Collaboration concluded, the $Z_b$ could satisfy all results of the cascade decay with at least 4 quarks. A specific quark structure hypothesis was able to be placed on both $Z^+_b(10610)$ and $Z^{0}_b(10650)$, due to the coincident invariant mass of $(B^*\bar{B})^{\pm}$ and $(B^*\bar{B}^*)^{\pm}$. 

\[ \text{Figure 1.11: Recoil kinematics: The four-vector (and thus invariant mass) of } h_b\pi^\pm \text{ can be found from initial beam energies and a second } \pi^\mp, \text{ without reconstructing } h_b. \text{ The invariant mass associated with } P_{\text{rec, } \pi^\pm} \text{ is called the recoil mass, or } M_{\text{mass, } \pi^\pm}, \text{ and is exactly equal to } M_{h_b\pi^\pm}. \text{ The definition of recoil mass is in the right, an important quantity in this thesis.} \]
Fit results denoted by open histogram, experimental data given as points with error bars. Histograms (a)/(b) are of decays to $\Upsilon(1S)$, (c)/(d) to $\Upsilon(2S)$ and (e)/(f) to $\Upsilon(3S)$, all with background contributions shaded. Histograms (a),(c) and (e) show consistent twin peaks in the vicinity of 10610 MeV and 10650 MeV across all order of $m$, in product pairing $\Upsilon(mS)\pi$.

Figure 1.13: $\Upsilon(5S)$ dipion decays of interest, as cascade decays. $Z_b(106XX)$ is either 10610 MeV or 10650 MeV resonance.

**1.3.2 2016: Energy scan of the $e^+e^- \rightarrow h_b(nP)\pi^+\pi^-$ ($n=1,2$) cross sections and evidence for $\Upsilon(11020)$ decays into charged bottomonium-like states**

The most recent observation of $Z_b^+(10610)$ was in an analysis of two parts. First, cross sections $e^+e^- \rightarrow h_b(nP)\pi^+\pi^-$ was measured at varying energies, with peaks at COM energy 10860 MeV and 11020 MeV. As these are the masses of the $\Upsilon(5S)$ and the next order bottomonium $\Upsilon(6S)$, this agreed with the outcome of the 2011 analysis, that $e^+e^- \rightarrow h_b(nP)\pi^+\pi^-$ could take place via $\Upsilon(5S)$. This was also the first observation of the same process via $\Upsilon(6S)$, motivating the second study into the presence of $Z_b^+(106XX)$ at this new COM energy.

It can be seen that there is very little resolution in the $M_{\text{miss},\pi}$ spectra of Figure 1.14b and Figure 1.14c, when compared to that of the $\Upsilon(5S)$ result in Figures 1.12(g) and 1.12(h). This is a result of the magnitude of the $\Upsilon$ data sets, where 121.4 $fb^{-1}$ of $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ was used in 2011, whereas only 1 $fb^{-1}$ was available in the $\Upsilon(6S)$ decay in the 2016 analysis. In particular, there is no visible demarcation between the $Z_b^+(10610)$ and $Z_b^+(10650)$ states and we are thus unable to conclude if both the 10610 MeV and 10650 MeV resonance are present at $\Upsilon(6S)$.

**1.4 The Role of this Analysis**

As charged, bottomonium-like candidates, the $Z_b(106XX)$ resonances are in blatant opposition to the $q\bar{q}$ definition. It is imperative to conduct further measurement of these resonances, so as to identify the true minimum
Figure 1.14: Results from 2016 $Z^+_b(106XX)$ analysis (adapted from [13]). Figure 1.14a demonstrates that the Born cross section, $\sigma^B(e^+e^- \rightarrow h_b(nP)\pi^+\pi^-)$ is maximum at the $\Upsilon(5S)$ and $\Upsilon(6S)$ for both $h_b$. Specifically, as the focus of this thesis, $\sigma^B(e^+e^- \rightarrow h_b(1P)\pi^+\pi^-)$ is 2.89 ± 1.04(stat.) ± 0.18(corr.syst.) ± 0.13(uncorr.syst.) around the $\Upsilon(5S)$ resonance and 2.57 ± 0.88 ± 0.13 ± 0.15 around the $\Upsilon(6S)$. Figure 1.14b and Figure 1.14c demonstrate $M_{\text{miss},\pi}$ derived from $\Upsilon(6S) \rightarrow h_b(nP)\pi^+\pi^-)$. 

quark content. If this is found to be consistent with Gell-Mann's 50 year old hypothesis, QCD will be thrust back into the spotlight. Faced this time with a particle zoo of exotica, theoretical physicists will need to reinvigorate the field of QCD, to accomodate for it’s higher order applications to hadronic structure.

It is of particular interest now more than ever to consider an analysis in heavy non-$q\bar{q}$ mesons, as the KEKB collider undergoes the technical upgrade to SuperKEKB. The upgraded collider is poised to drastically increase the rate of $e^+e^-$ collisions, thus allowing for a larger number of events in which $Z^+_b(106XX)$ to be produced. As the successor to the original experiment that found first evidence of a number of heavy-quark exotica, the upcoming Belle II experiment is the only B-factory currently able to assess these candidates. While the LHCb experiment has also successfully contributed to five-quark exotica in the heavy sector, we can expect better results with SuperKEKB. The LHCb spectrometer exists within a proton-proton collider, where CMS energy and thus resultant interactions can vary greatly depending on how the proton energy is distributed amongst it’s constituents. As a collider of fundamental particles, it is easier to consistently produce collisions of a fixed CMS energy. We can therefore have a higher yield of desired events, in our case at $\Upsilon(6S)$ energy, than at LHCb.

This thesis will contribute to the exotica search at Belle II, by narrowing Belle’s analysis to the specific decay channel $\Upsilon(6S) \rightarrow \pi^- [Z^+_b(10610) \rightarrow h_b(1P)\pi^+]$. From this is point onwards, $Z^+_b$ will be used strictly in reference to $Z^+_b(10610)$, as $Z^+_b(10650)$ is not considered in this analysis. We will also assume that charge conjugation is implied, such that any mention $Z^+_b$ also includes $Z^-_b$ originating from $\Upsilon(6S) \rightarrow [Z^-_b \rightarrow h_b(1P)\pi^-]\pi^+$. Whereas the original Belle experiment only gathered 1 fb$^{-1}$ of data via this channel, we will plan for an analysis of up to 50 fb$^{-1}$, to improve upon the poorer statistics of the previous $Z^+_b$ observation. This search can be performed as early as 2018, when SuperKEKB enters into Phase II of commissioning. At this time, it will undergo initial collisions take place with some particle tracking limitations. Phase III, where full data taking can begin is scheduled for 2019 commencement. Thus, it could be within the next 5 years that Belle II could be the pioneering collaboration to confirm the structure of this 4 quark meson.
Chapter 2

SuperKEKB and the Belle II Detector: Hardware of the Belle II Experiment

In contrast to high-energy experiments such as the ATLAS Experiment at CERN, the approach of Belle II is to produce large data samples, in order to conduct high-precision measurements of newly discovered processes. SuperKEKB is poised to improve its luminosity from Belle’s $2.11 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ to $80 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$, set to become the highest luminosity collider when at peak performance. With emphasis on producing a large data set to pursue rare decays, the experiment is therefore well suited to elucidating the flavour structure of exotic hadrons, such as $Z_b^+$.

Before beginning our analysis, we will review the method of particle collision and detection planned for the Belle II experiment, particularly in improvements over the original experiment. A full description of this can be found in the Belle II Technical Design Report[14] and the Letters of Intent [15][16][17], as this chapter will summarise the hardware concepts in the context of how we can best detect $Z_b^+$ when construction is completed.

![Figure 2.1: Schematics of the SuperKEKB collider and the Belle II Detector.](image)

2.1 The SuperKEKB Collider

The KEK facility, from the Japanese Kö ENERGY KasoKuni Kenkyü Kikō or High Energy Accelerator Research Organization, is the site of of both the Belle and Belle II experiments. Located in Tsukuba, Japan, the SuperKEKB collider operates on almost the same principles as KEKB, with both designed to collide electrons and positrons at CMS energy to produce B mesons. The new generation B-factory is referred to as a Super-‐B
factory, where implementation of the new *nano-beam scheme* increases the rate of $e^+e^-$ collisions. This is performed by squeezing the height of the $e^+$ and $e^-$ beams so that their area of overlap is more compact the Interaction Point (IP).

As an accelerator, SuperKEKB consists of four main sections: an injector linear accelerator, a damping ring, the two counter-propagating storage rings and the interaction point.

- Collider electrons are sourced from the *injector linear accecelerator*, or linac, where they are accelerated to 7 GeV over a 600m straight, by applying a 6.7 MV radio frequency (RF) voltage. Positrons are also produced here as secondary particles in the interaction of other electrons and a tungsten target. The positrons are accelerated to 4 GeV in the linac.

- The nano-beam scheme requires positrons with lower beam energy emittance, so a *damping ring* of 135m radius is used to induce synchrotron radiation. A further RF voltage is applied to accelerate and collimate the beam, minimising emittance.

- The storage rings, or beam lines are of circumference 3016.26 m, with one carrying the electron beam and the other the positron beam. The name Low Energy Ring (or LER) is the positron beam storage ring and High Energy Ring (or HER) to the electron beam storage. The asymmetry in beam energy is desirable, so as to steer the direction of particle decays for best detection, in this case, the direction of HER. In the case of $\Upsilon(6S)$, electrons are accelerated to 7.29 GeV and positrons to 4.11, to give COM 11.02 GeV.

Particles in the HER and LER can propagate for up to 10 minutes, a large decrease from the hour lifetime of KEKB. This is a sacrifice in the nano-beam scheme, as the compactified IP results in higher rate of intra-beam interactions. The momentum of electrons and positrons within the beam can then divert, hit detector materials and create a shower of undesired particles which could be misidentified as the result of an $e^+e^-$ collision. This effect was not present in the original Belle experiment and will become an important part of our analysis, when looking at sources of background events in Chapter 3. Other relevant sources of *beam induced background* are beam-gas scattering, which can take place via bremsstrahlung or Coulomb scattering. A perfect vacuum may not always persist in the interaction region, so that beam particles may scatter off gas particles. In the Coulomb case, electrons and positrons scatter away from he collimated beam elastically, or in the case of bremsstrahlung, with the emission of a photon. Both lead to particles that can induce showering in the surrounding materials.

### 2.2 Subdetector Components of the Belle II Detector

The Belle II Detector is stationed around the interaction region of SuperKEKB, where electron-positron collisions occur in a 20mm diameter, beryllium pipe. The detector is a barrel spectrometer, with subcomponents stacked radially outwards. Particle detection occurs within each subcomponent, with the results of each considered when assigning a particle identity. We will only consider the function of each subdetector relevant to our analysis, in the context of pion particle identification ($\pi$-PID) as required by this analysis.

**Vertex Detection: The Pixel and Silicon Vertex Detectors**

Vertex detection involves determining where the decay of a particle took place. For the Belle II experiment, the detector will contain a pixel detector (PXD) consisting of two layers of sensors located at 14mm and 22mm radially from the beam pipe. The sensors consist of 8 million silicon pixel cells that operate as Depleted Field Effect Transistors (DEPFET). Particles from the IP modulate the electric field running through each transistor, thus registering the location of a hit. allowing for excellent spatial resolution of hits. The PXD is a new addition to the original vertex detector, needed to accomodate for fast detection of the larger number of collisions taking place and to improve the signal-to-noise ratio with the new susceptibility to beam background.
Figure 2.2: Cross-section of the Belle and Belle II Detector, demonstrating the difference in subdetectors. The z-axis is from left to right and theta is measure anti-clockwise from positive z-axis. The detector is barrel in shape, demonstrating azimuthal symmetry in detection.

Vertexing from the PXD is performed in conjunction with the silicon vertex detector (SVD). The SVD has four layers between 3.8 cm and 14.0 cm radially from beam pipe, double the distance seen in Belle. It is capable of detecting particles at polar angles $17° < \theta < 150°$, where the symmetric acceptance accounts for the directional decay production associated with asymmetric beam energy. Each layer is a double-sided silicon strip detector, detecting via induced semiconductor currents, where a hit confidence is enhanced by coincidence of multiple layered detections. Together, the PXD and SVD allow for high spatial resolution of initial track positions. The variables used in this analysis that depend on vertexing are $dr$ and $dz$, which are radial distance and z-direction distance of detection respectively. We will accept pions as originating from our desired process, and not from beam background events, if they are measured at $dr < 0.3$cm and $dz < 2$cm.

Central Drift Chamber (CDC)

The CDC is a large cylindrical section that encompasses the vertexing detectors, extending from 16cm to 113cm from the beam pipe. The section is filled with 30 $\mu$m diameter wires that run parallel to the cylinder axis and are held at a fixed electric potential. The method by which it detects particles is similar to the function of a smoke alarm; the chamber is filled with a mix of inert helium-ethane gas, which can become ionised by the passage of charged products. Now charged themselves, the gas molecules “drift” towards and influence the current in the sensor wires, allowing for detection. A 1.5 T magnetic field is present in the chamber, which by the Lorentz force, results in curved trajectories of moving charged particles. This allows for charge-mass ratio of a particle to be identified, by the direction and magnitude of the radius of curvature, $r = \frac{mv}{qB}$. Combination of the initial conditions from the vertexing detectors, the full track of a charged particle in the detector can be reconstructed.

As well as being important in track reconstruction, the CDC can also provides charged particle identification from energy lost per distance in the gaseous medium. The mean energy lost, described by the Bethe-Bloch equation, is a function of relativistic boost of the particle in lab frame $\beta \gamma$. As $\beta \gamma = \frac{p}{m}$, the energy loss in gas is a function of relativistic boost, which can be matched to a characteristic curve for each particle hypothesis of mass $m$. Depending on this characteristic energy loss, a likelihood quantity $L_m$ can be assigned to how well a particle matches this hypothesis. For our analysis, we will want to choose particles that are most likely to be pions, over the other charged particles that can be detected, electrons, muons, kaons and protons. We will
accept pions provided that their pion likelihood, \( L_\pi \), is greater than their likelihood of being protons, \( L_p \), or kaons, \( L_K \). Specifically, we would like \( \frac{L_\pi}{L_{p/K}} > 0.1 \), sometimes implemented as \textit{delta log likelihood}, \( \log(L_\pi) - \log(L_{p/K}) = \log\left(\frac{L_\pi}{L_{p/K}}\right) > \log(0.1) \). Similarly, the probability that a particle is defined as an electron, denoted as \( P_{IDe} \), is defined as the difference in likelihoods such that \( \frac{L_e}{L_\pi} \). Electron likelihoods can also be derived from the electromagnetic calorimeter.

### Time-of-Propagation (TOP) Counter

The TOP counter in the Belle II detector is a combination of two machines in the Belle detector, the time-of-flight and aerogel Cherenkov counter. The TOP counter is located on the border of the CDC and contributes to particle identification, especially to delta log likelihood between kaons and pions. Operating on the principle of Cherenkov radiation, where particles may move faster than the speed of light in a medium, thus emitting a characteristic cone of light. The size of this circle subtended by this cone can be used to demarcate between pions and kaons. Moreover, the time of flight can be measured within the medium, thus combining the two concepts to perform particle identification.

### Electromagnetic Calorimeter

The ECL is a detector for QED-interaction particles, specifically photons, electrons and some low energy muons. It is located at 1.25m from the beam line. As a calorimeter, it measures energy deposits of QED particles that interact with it. It consists of a caesium-iodide scintillator crystals, in which QED particles interact with by showering and pair production. The event shape of the shower can be used to demarcate between electrons, photons and muons, which make small deposits if any.

### \( K^0_L \)-Muon Detector

The KLM is the final subdetector, consisting of alternating iron and detector elements, with the intention of detecting some of the higher momentum final state particles. Specifically these are its namesake particles, the neutral \( K_L \) and \( \mu \). Neutral particles, such as the \( K_L \), will not leave tracks in the CDC as they are not charged, so \( K_L \) detection is based heavily in KLM, where they can be identified in showering events in matter. However, our analysis looks to the difference in likelihoods between pions and charged pions, so the KLM is not relevant to us.

### 2.3 Detector Commissioning Schedule

The Belle II Detector has 3 key stages of commissioning. Phase I, which has already taken place, is the detector operating with no particle collisions, so as to calibrate beam currents and measure background events. Phase II features the first particle collisions with all subdetectors, minus the vertexing detectors. Phase III will be a full scale Physics run, where the full suite of subdetectors are implemented. As mentioned previously, the tracking of particle trajectories, momentum and energy can all be measured accurately in the CDC, without the use of vertexing equipment. It will be of interest to see if our analysis can take place with the loss in tracking efficiency associated in Phase II, as Phase II is due to commence as early as 2018. Full vertex detection will not be available until Phase III, scheduled between 2018-2019. If we are able to demonstrate via simulation, that we could accurately identify the presence of \( Z^+ \) (10610) in Phase II, we could be identifying this four-quark candidate as early as next year.
Figure 2.3: Cross-section of the vertex detector system. The first two layers closest to the z-axis are PXD, while the latter 4 layers are SVD. The first SVD layer, referred to as the third VXD layer, was built at The University of Melbourne. Units are in centimetres.

Figure 2.4: Belle CDC (top) versus Belle II CDC (bottom).

Figure 2.5: Track efficiency and momentum reconstruction, as simulated for Phase II and Phase III detector geometry for pions in our $Z^+_b$ event. The lime green line indicates Phase II, and we see that for 80% tracking efficiency, we can only resolve pions with transverse momentum 0.3 GeV/c or higher. This is because the lack of vertexing close to the interaction point means that pions must have sufficient transverse momentum to travel the radial distance to the central drift chamber. This also will affect our recoil mass distribution of pions that signal $Z^+_b$, as these will be lower momentum pions. We will see this in the truth MC of Chapter 3.
Chapter 3

Monte Carlo Simulation of $Z_b^+$ and Background Processes in $\Upsilon(6S)$ Decays

Our discussion so far has consisted of how $Z_b^+$ was previously measured at the Belle experiment and how future detection would take place after upgrading the accelerator to SuperKEKB. The next step is to assess the feasibility of a $Z_b^+$ analysis in $\Upsilon(6S)$ decays at Belle II. For this, we use computer-generated $e^+e^-$ collision data in order to study how a $Z_b^+$ event may present itself when real $\Upsilon(6S)$ data becomes available.

To accurately model high-energy particle interactions, we must consider the indeterminism of quantum observables. Particle decay parameters are stochastic, such that a resultant particle’s energy, lifetime, momentum and mass are spontaneously assumed according to calculable probability amplitudes. This can be emulated via the Monte Carlo statistical technique, where values are randomly chosen from a given sample space. By repeated calls to Monte Carlo techniques, one can therefore mimic a particle’s random choice of kinematic eigenvalues and apply energy conservation to derive results of each decay. Data generated according to this technique will henceforth be referred to as MC.

3.1 MC Generation and Analysis Strategy

Generating an MC data set of the magnitude comparable to the Belle II experiment’s expected luminosity is not possible for a single analyst. Instead, the Belle II Collaboration has a dedicated data production group with access to high-performance computing, releasing MC to analysis users. The software format is identical to the format of real collision data, meaning that prepared analyses can be applied easily when the true Belle II data set becomes available. An important duty of the Belle II analyst is assist the data production group and by validating MC, that is, to ensure that the simulation is consistent with theoretical kinematics derived by hand. We therefore do not need to perform any calculations ourselves to check the validity of the MC we use.

This analysis uses the data generated in the seventh official MC campaign (MC7), originally produced between November 2016 and February 2017. This is conducted within the Belle II Analysis Framework (BASF2), a C++-based environment equipped with the detector geometry, analysis resources and physics generators, the last of which are FORTRAN scripts which incorporate the theoretical phenomenology for the Belle II experiment. Specifically, our MC is generated according to 11.02 GeV COM collisions of $e^+e^-$, decaying via an $\Upsilon(6S)$ resonance, $\Upsilon(6S) \rightarrow [Z_b^+(10610) \rightarrow \pi^+h_b(1P)]\pi^-$. To produce data, the MadGraph physics generator calculates the cross sections for $e^+e^- \rightarrow h_b(1P)\pi^+\pi^-$ with $\Upsilon(6S)$ beam parameters. The event generator (EvtGen), uses supplied decay probability tables and invokes Monte Carlo methods to execute a decay path according to these probabilities.

As discussed in Chapter 1, $h_b(1P)$ has a poorly investigated branching ratio, meaning our decay path requires a topdown, inclusive analysis. The decay tables (Figure 3.1) reflect this by remaining agnostic to
possible products, specifying only the number of intermediate gluons. The Pythia toolkit can then perform hadronisation, as well as generate further decays. Once the event reaches final state particles, Geant4 simulates the interaction of these particles with surrounding materials, so as to emulate travel through the subdetectors. For our analysis, we separately look at MC simulated in Phase II and Phase III detector geometry, so as to investigate the difference in measurements at the various stages of SuperKEKB commissioning. This completes the MC data generation.\(^{[18]}\)

MC is then stored for analysis as a file consisting of decay particle information, as a series of hits “detected” by each subcomponent. This can be interpreted within BASF2 to give more useful quantities, such as particle kinematics, likely particle identities, point of origin and flight information. Variables of interest are saved as .root files, interpretable by the C++-based program ROOT. Developed by CERN, the program excels in large data handling and is predominantly used in this analysis to display results derived from MC.

If desired, the generated decay information prior to detector response can also be stored for analysis; this is referred to as truth MC. We initially look at truth MC, as it allows us to investigate the physics of \(Z_b^+\) events before incorporating any systematic errors in measurement by the detector. Knowledge of the signatures of an event that does contain \(Z_b^+\) will allow us to identify whether it is present in a random sample of \(\Upsilon(6S)\). In this chapter only, we analyse truth MC of both \(Z_b^+\) processes, as well as other \(e^+e^-\) processes at a COM energy of 11.02 GeV. From Chapter 4 onwards, we will look strictly at MC with detector response, though truth MC may be implemented as an accuracy check.

### 3.2 Signal MC

We begin by looking at truth MC generated according to the \(Z_b^+\) process. Our signal to the existence of the \(Z_b^+\) will be the same as suggested in the 2011 and 2016 papers; the invariant mass of the system that recoils from pions in \(\Upsilon(6S)\) decays. The definition of the recoil mass is derived from conservation of momentum and energy in decays, demonstrated in Figure 3.2a. Thus, to look for evidence of \(Z_b^+\), we investigate the distribution of recoil masses of pions resulting from \(\Upsilon(6S)\) decays. Specifically, we want to restrict ourselves to the pion created alongside the \(Z_b^+\), that is to say, \(\pi^-\) such that \(\Upsilon(6S) \rightarrow Z_b^+(10610)\pi^-\). We expect that the recoil mass from this partner pion will be consistent with the invariant mass of \(Z_b^+\).

Figures 3.2a and 3.2b demonstrate that not all daughter pions of \(\Upsilon(6S)\) will be useful in identifying \(Z_b^+\). The pion associated with \(Z_b\) (henceforth referred to as \(\pi_1\)) will have recoil mass equal to the invariant mass of \(Z_b^+\), while the recoil mass derived from the pion associated with \(h_b(1P)\) (henceforth referred to as \(\pi_2\)) will not. We will take note of this when analysing the truth MC of our signal process, so that we correctly differentiate between the contribution from \(\pi_1\) to the recoil mass spectra and that of \(\pi_2\). We also must consider pions from the hadronic decays of \(h_b(1P)\) and \(\eta_b(1S)\), as the recoiling system of these pions will also not be the \(Z_b^+\).

The histograms of Figure 3.3 are of the recoil mass and transverse momentum of all pions generated from \(\Upsilon(6S)\) decays containing our \(Z_b^+\) process. While our full analysis will occur using Phase II and Phase III MC, we choose to only display histograms of Phase II MC in this case. This is because the physics generation does

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Upsilon(6S))</td>
<td>11.0190</td>
<td>0.079</td>
<td>(Z_b^+(10610)\pi^+)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Z_b^+(10610))</td>
<td>10.6072</td>
<td>0.184</td>
<td>(h_b(1P)\pi^+)</td>
<td>1.0</td>
</tr>
<tr>
<td>(h_b(1P))</td>
<td>9.8750</td>
<td>0</td>
<td>(\eta_b(1S)\gamma)</td>
<td>0.492</td>
</tr>
<tr>
<td>(\eta_b(1S))</td>
<td>9.4030</td>
<td>0</td>
<td>(ggg)</td>
<td>0.508</td>
</tr>
</tbody>
</table>

Figure 3.1: Decay table for \(\Upsilon(6S) \rightarrow [Z_b^+(10610) \rightarrow \pi^+ h_b(1P)] \pi^-\), implemented by the data production group to produce signal MC. Masses used in MC generation are randomly sampled in a distribution centred on the given value and with width given. Amplitudes are arbitrarily assigned.
Transverse Momentum

3.2d The dipion decay featuring $Z^0$.

3.2c Evaluating the recoiling mass from the $Z^0$ will also not give the $Z^0$ mass.

Figure 3.2: Recoil kinematics:

(a) $P_{e^+} + P_{e^-} = P_{Y(6S)} = P_{h_0(1P)} + P_{e^+} + P_{e^-} - P_{h_0(1P)}$

(b) $P_{e^+} + P_{e^-} = P_{Y(6S)} = P_{h_0(1P)} + P_{e^+} + P_{e^-} - P_{h_0(1P)}$

(c) $P_{e^+} + P_{e^-} = P_{Y(6S)} = P_{h_0(1P)} + P_{e^+} + P_{e^-} - P_{h_0(1P)}$

3.2a The $Z^0$ four-vector is equal to the four-vector of the system of particles recoiling from it’s partnering pion.

3.2b Evaluating the recoiling mass from the $Z^0$ partnered with $h_0(1P)$ will not give the $Z^0$ mass.

3.2c The recoil mass calculated from these pions will also not give $Z^0$ mass.

3.2d The dipion decay featuring $Z^0$. $h_0(1P)$ and it’s products may decay hadronically, so that $h_0(1P) \rightarrow \pi X$, where $X$ indicates any number of other decay products. This emphasises that we need to look at the signature of $\pi$ associated with $Z^0$ to ensure we obtain the correct mass.

$P_{rec,\pi} = P_{e^+} + P_{\pi^-} - P_{\pi^+} - P_X$

$P_{rec,\pi} \neq P_{Z^0}$

$M_{rec,\pi} = M_{Z^0}$

$M_{rec,\pi} \neq M_{Z^0}$

$P_{e^+} + P_{e^-} = P_{Y(6S)} = P_{h_0(1P)} + P_{e^+} + P_{e^-} - P_{h_0(1P)}$

Figure 3.3: Kinematics of signal pions: Recoil mass and transverse momentum. Black histograms contains all MC true events. Gold shaded histograms are MC true pions that have $\Upsilon(6S)$ decay. Silver shaded histograms are MC true pions that have $\Upsilon(6S)$ as their mother particle and are therefore, partnered with $Z^0$. We will refer to these pions as $\pi_1$. Silver shaded histograms are MC true pions that $Z^0$ as mother and are therefore partnered with $h_0(1P)$. We will refer to these pions as $\pi_2$. We can assume that the large number of pions in the region between the black, silver and gold histograms are from the unspecified $h_0(1P)$ decays.

not vary between phases; the differing geometry only affects detection, as discussed in Chapter 2. Thus as we look at purely generated decay results and disregarding detection, the distributions are identical in both Phase II and Phase III. For completeness, the number of pions generated in both phases are specified in Figure 3.4.

To examine contributions from pions that do not signal the $Z^0$, the histograms are overlayed with the separate distributions of pions the generator identifies as $\pi_1$ and $\pi_2$. These separate distributions are present as two narrow peaks in Figure 3.3a, coinciding with the peaks of the histogram containing all generated pions. It is very clear that non-$\pi_1$ pions hide the contribution of $\pi_1$, making it harder to assign significance to the
<table>
<thead>
<tr>
<th>Detector Phase</th>
<th>No. of π Generated</th>
<th>No. of π with Υ(6S) mother</th>
<th>No. of π with Z_b mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>217858</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>III</td>
<td>217630</td>
<td>20000</td>
<td>20000</td>
</tr>
</tbody>
</table>

Figure 3.4: Table of Generated Pion Statistics: The signal MC contains 20000 Υ(6S) events. When looking for MC event signatures, as simulated in Phase II and Phase III geometry, we restrict the analysis to generated particles rather than detected particles. We see that there is no difference in the number of pions in the dipion decay event, meaning the relatively small difference in the total number of pions generated can be attributed to statistical fluctuation in randomly generated pions from post-$h_b(1P)$ decays.

result. With the π_1 peak in range of 10.61 GeV/c^2, we see our expectation of the π_1 recoil mass signalling the Z_b^+ is consistent with truth MC. Moreover, we see very little overlap between the peak attributed to π_2, which is centred on 10.295 GeV/c^2. This means that if we analyse pions with only higher recoil mass, we are less likely to include the contribution π_2 without throwing away any π_1 that will contribute to a stronger Z_b^+ signal. We also see that there are 197,858 MC true pions in Υ(6S) decays that are neither π_1 or π_2—almost 10 times more than the number of π_1. The method of demarcating between π_1 and h_b(1P) descendent pions will be discussed in Chapter 4.

We now study the momentum distribution of pions in the event. The histogram of Figure 3.3b, demonstrates more overlap of π_1 and π_2 in transverse momenta than there was for recoil mass. However the peak transverse momenta of π_2 is easily discernible from π_1, occurring at 0.675 GeV/c and at 0.375 GeV/c, respectively. From the momentum 4-vector analysis in Fig 3.2, the relationship between $p_T$ and $M_{recoil}$ can be easily shown, specifically that a lower momentum particle will have a higher recoil mass. This explains the mirroring of peaks between the recoil mass and transverse momentum distributions. The 3-vector momentum magnitude will also be correlated with transverse momentum and therefore recoil mass, explaining the distinct momentum ranges of π_1 and π_2.

The remaining histograms of Figure 3.5 demonstrate the geometry of pions originating from the Υ(6S), specifically the directions in which they are produced, relative to the IP. We clearly see that there is a favoured polar angle, amongst all pions. This is a result of the small boost in Υ(6S), to force it’s products towards the forward detectors explained in Chapter 2. Between pions of differing mothers, directly involved in the dipion decay or otherwise, there are no discernible biases in either the azimuthal or polar directions. This suggests that angle cannot be used to demarcate between π_1 and others, as all distributions are of the same shape: azimuthal symmetry and with slightly more pions emitted down the barrel. This can be further seen in the phase space of the dipion system included in 3.5.

Validation PLOTS

FEYNMAN DIAGRAM

### 3.3 Background MC

So far, we have focused on signatures present in the recoil mass spectra and the kinematics of our desired process, $e^+e^- \rightarrow \Upsilon(6S) \rightarrow Z_b^+\pi^-$. We noted that the recoil mass distribution using a random sample of pions from Υ(6S) decays can contain π_2 pions and post-$h_b(1P)$ pions, whose contribution can diminish the significance of a peak at 10.61 GeV/c^2. We also have to consider that other possible decay paths will result from $e^+e^-$ collisions held at COM energy 11.02 GeV, as these may also decay to pions. We now further study signatures in events from the background processes that contribute a significant number pions, as compared to the signatures of Z_b^+.

We will consider two kinds of background; the background due to processes that circumvent the Υ(6S) resonance, referred to as continuum background and beam induced background, whose origin was explained in Chapter 2.
Figure 3.5: Kinematics of signal pions: Momentum 3-vector components and their corresponding phase space. Legend same as in 3.3. Phase space demonstrates that $\pi_1$ (gold points) have smaller momentum magnitude than $\pi_2$ (silver points), as well as their event shape being more spherical.

### 3.3.1 Continuum Contribution: $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow \tau^+\tau^-$

Even though we may expect that 11.02 GeV collisions will favour $\Upsilon(6S)$ production, due to the closeness of the COM energy to its mass, this is not always the case. Collisions can also result as $e^+e^- \rightarrow f\bar{f}$, where $f$ is a quark or charged lepton. In the case of $f$ as a quark, resonant production is restricted to quarkonia of lower mass than $\Upsilon(6S)$, meaning they are created with a boosted momentum to conserve energy. This boosted momentum can result in “jet-like” decay events —this will be implemented in Chapter 4 to decrease the impact of continuum pions on our recoil measurements. These $q\bar{q}$ resonances, where $q \in \{u,d,s,c\}$, can then decay to charged pions via pair production. Continuum background MC is also produced by the Belle II data production group, with the only difference in generation process being the use of the KKMC generator instead of EvtGen to create $q\bar{q}$ decays.

We also consider the continuum contribution of QED process, $e^+e^- \rightarrow \tau^+\tau^-$. The $l \in e,\mu$ cases are not considered, as their masses are too small to decay via pions. Tau pair MC is also generated with the KKMC generator, with further $\tau$ decays generated with the tauola generator. We now study the pion contribution by looking at the truth MC for these background states.

The distributions of pions from continuum events in recoil mass and transverse momentum again show “mirroring”. Notably, the unit area normalisation Figure 3.10 demonstrates the shape of the background and signal MC contribution to each variable, so we can best compare their signatures. The background MC contribution follows a smooth, continuous increase in counts with higher recoil mass and lower transverse momentum, much like the post-$h_b(1P)$ pions. The distribution of background recoil mass seems to “peak” at
### Continuum Process Cross-section 

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross-section [nb]</th>
<th>No. of events (II/III)</th>
<th>No. of $\pi$ (II/III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+ e^- \rightarrow u\bar{u}$</td>
<td>1.605</td>
<td>7.40×10^7 / 7.40×10^7</td>
<td>9.15×10^7</td>
</tr>
<tr>
<td>$e^+ e^- \rightarrow d\bar{d}$</td>
<td>0.401</td>
<td>1.85×10^7 / 1.85×10^7</td>
<td>2.31×10^7 / 1.15×10^7</td>
</tr>
<tr>
<td>$e^+ e^- \rightarrow s\bar{s}$</td>
<td>0.383</td>
<td>1.77×10^7 / 1.92×10^7</td>
<td>4.24×10^7 / 4.24×10^7</td>
</tr>
<tr>
<td>$e^+ e^- \rightarrow c\bar{c}$</td>
<td>1.329</td>
<td>6.13×10^7 / 6.13×10^7</td>
<td>9.15×10^7</td>
</tr>
<tr>
<td>$e^+ e^- \rightarrow \tau^+\tau^-$</td>
<td>0.919</td>
<td>4.24×10^7 / 4.24×10^7</td>
<td>1.54×10^7 / 7.7×10^7</td>
</tr>
</tbody>
</table>

Figure 3.6: The cross-sections of each continuum process at COM energy 11.02 GeV are calculated by the data group. They chose to generate 50 fb$^{-1}$ of continuum events, an arbitrary amount as there is not yet consensus on how long SuperKEKB will operate at $\Upsilon(6S)$ energy.

![Recoil Mass](image1)

(a) 

![Transverse Momentum](image2)

(b) 

Figure 3.7: Kinematics of continuum background pions: Recoil mass and transverse momentum.

![Recoil Mass: Signal and Continuum Background](image3)

(a) 

![Transverse Momentum: Signal and Continuum Background](image4)

(b) 

Figure 3.8: Kinematics of all continuum background pions (purple shaded) and signal MC pions (black): Recoil mass and transverse momentum, where both histograms are normalised to unit area.

10.9 GeV/c$^2$. This is a result of the number of low momentum pions produced and we must be careful to not confuse this with a meaningful resonance.

The momentum components of the continuum pions show some deviation from signal pions. As expected from the transverse momentum distribution, lower momentum is associated with a larger number of particles. Both background and signal pions demonstrate the same azimuthal symmetry when normalised. The distribution of continuum pion polar angle peaks at a smaller angle than signal pions. This can be explained by the “jet-like” behaviour of higher momentum events vs the more spherical event shape of lower-boosted $\Upsilon(6S)$. Again, this signature will become a key criterion in separating signal pions from continuum ones, beginning in Chapter 4.
Figure 3.9: Kinematics of continuum background pions: Momentum 3-vector components

Figure 3.10: Kinematics of continuum background pions: Momentum 3-vector components
3.3.2 Beam Background

The origins of beam background were described in Chapter 2, predominantly due to particle showering from Touschek scattering and beam-gas interactions. To investigate the effect of this on our recoil mass distribution, we will utilise MC that has beam events overlayed with the previous beam-free signal MC. As beam background is an accelerator effect, we look to use MC with detector response for the first time. As the rest of our analysis will take place using beam background, we will look to next chapter to compare and contrast their effect when compared to the truth pion recoil distribution.

<table>
<thead>
<tr>
<th>Detector Phase</th>
<th>No. of $\pi$ Generated</th>
<th>No. of $\pi$ with $\Upsilon$(6S) mother</th>
<th>No. of $\pi$ with $Z_b$ mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>869162</td>
<td>80000</td>
<td>80000</td>
</tr>
<tr>
<td>III</td>
<td>870000</td>
<td>80000</td>
<td>80000</td>
</tr>
</tbody>
</table>

Figure 3.11: Table of Generated Pion Statistics, with Beam Background:
Chapter 4

From Pions to New Particles:
Reconstructing and Optimising the $Z_b^+$ Signal

With knowledge of the pion recoil mass distributions, both signal and background pions, we can now analyse MC with detector response. Due to the limitations of the Belle II hardware we will begin to see the impact of measurement error. Momentum, and thus recoil mass distributions will be more “smeared” than in pure signal MC.

We also saw that the number of pions that could interfere with this distribution, far outweigh those useful in measuring $Z_b^+$. Without careful thought into what pions we select for our analysis, we may find that a resonance in recoil mass data caused by a $Z_b^+$ is overshadowed by the contributions of less relevant pions. Therefore, we must maximise our signal to background ratio with effective selection criteria. Our analysis proceeds as a standard experimental particle physics “bump search”; we would like to investigate how to best use selection criteria to separate background pions from our measurements without losing signal pions, so that we may best see our “bump” in real detected events.

4.1 Preselection and Reconstruction

We use BASF2 to interpret both our signal and background MC. In a more typical, exclusive reconstruction, we are able to rebuild candidates entirely from their detected daughter particles. As mentioned earlier, the branching ratios of $h_b(1P)$ are not well known, so reconstruction of $h_b(1P)$ and thus $Z_b^+$ will not proceed in this way. Instead, we consider a list of all possible combinations of final state pions pairings of opposing charge, as is dictated by our signal decay path. These pairs are then reconstructed, yielding a state $A$, that is the sum of $\pi^+$ and $\pi^-$, such that $A \rightarrow \pi^+\pi^-$. This is not a real particle, but a useful construction to examine the number of possible pion pairings. Evaluating the mass of the system that recoils against state $A$ (the scalar invariant of the four vector $P_{rec, A} = P_{e^+} + P_{e^-} - P_A$) will be the same as that of $\pi^+\pi^-$, allowing us to use this as a constraint on pions in this list. Applying this constraint limits the pions that contribute to the final individual recoil mass distribution, so that they are more like to be those in $\Upsilon(6s) \rightarrow h_b(1P)\pi^+\pi^-$ and thus, $Z_b^+ \rightarrow \pi^+h_b(1P)$. This decay requirement placed on pions at reconstruction level is referred to as preselection criteria, as it ensures we begin with the correct final state pions and minimize the number of candidates per event. We consider pairings consistent with $h_b(1P)$ if $9.8 \text{ GeV}/c^2 < M_{rec, \pi^+\pi^-} < 10 \text{ GeV}/c^2$, as implemented by the 2016 Belle analysis.
\[ P_{e^+} + P_{e^-} = P_{\Upsilon(6S)} = P_{Z_b^+} + P_{\pi^-} \]
\[ = P_{h_b(1P)} + P_{\pi^+} + P_{\pi^-} \]
\[ \Rightarrow P_{rec,\pi^+\pi^-} = P_{e^+} + P_{e^-} - P_{\pi^-} - P_{\pi^+} \]
\[ = P_{h_b(1P)} \]
\[ \Rightarrow M_{rec,\pi^+\pi^-} = M_{h_b(1P)} \]

(a) Preselection criteria justification

(b) The combinatoric background is cut out drastically with preselection criteria.

Figure 4.1: The equation (a) demonstrates that the mass of the system recoiling against two pions is that mass of \( h_b(1P) \). Histogram (b) demonstrates how the number of candidate dipion pairings reduces drastically before (blue dotted histogram) and after the preselection criterion is applied (black histogram).

This preselection criterion is used to combat the main disadvantage to an inclusive reconstruction: combinatoric background. That is to say, if a particular \( Z_b^+ \) process produces post-\( h_b(1P) \) pions, we can unintentionally introduce double counting. For example, we may add the pions \( \pi_1 \) and \( \pi_2 \) to our list to analyse as they satisfy the criterion as a pairing, but also add the pairings \( \pi_1 \pi_{h_b(1P)} \) and \( \pi_2 \pi_{h_b(1P)} \). We attempt to limit the combinatoric background by placing further preselection criteria on pions admitted to the pion list: that the mass of the system recoiling against the pion pair is within error of the \( h_b(1P) \) mass. The justification of this is demonstrated in 4.1a. This does not completely rid us of post-\( h_b(1P) \) pions, but still limits the number of candidate pairings per event. It is not impossible for a pion to have three-momentum within the range of \( \pi_1 \) or \( \pi_2 \) (see Figure 3.5).

### 4.2 Selection Criteria

#### 4.2.1 Studying the Belle Criteria

After applying preselection criteria and reconstructing the \( \pi^+\pi^- \) pairs, we can consider selection criteria. Such criteria are imposed to maximise the signal to background ratio. For example, we saw in Figure 3.3b that a large number of \( \pi_2 \) had transverse momenta of 0.5 GeV/c or greater. If we were to consider the recoil mass of pions with transverse momentum less than 0.5 GeV/c, we could expect a smaller contribution from \( \pi_2 \) without substantial losses in the number of \( \pi_1 \).

The selection criteria of the Belle 2016 paper will be a launch pad for this analysis. We expect better performance when applied to Belle II events over Belle events, due to enhanced tracking efficiencies. We will measure the efficiency of such selections, and look into the distribution of our selection criteria in signal and background MC for Phase II and Phase III geometry with beam background.

In Figures 4.4 and 4.7, we see two very small peaks occurring around 10.3 GeV/c\(^2 \) and 10.6 GeV/c\(^2 \) in the single pion recoil mass calculated for both Phases II and III. These are consistent with the peaks we saw in truth-matched MC, which can be attributed to \( \pi_2 \) and \( \pi_1 \) respectively. The overall shape of the distributions are different to the truth MC — we can attribute this to the preselection cut that limited the recoil mass of pion pairs, and thus of individual pions. The recoil mass distribution for Phase III differs from that in Phase II as it admits a smaller peak in signal MC at 10.9 GeV/c\(^2 \). We saw the correlation between low momentum pions resulting in high recoil mass in Chapter 3, so we know there is a surplus of low-momentum pions detected in Phase III. This is to be expected, as the lack of VXD subdetectors in Phase II means that such low-momentum particles cannot be seen. This is demonstrated by the loss in tracking efficiency in this region. We can also
attribute this to beam background as we did not see this in the Phase III background-free signal MC. Once the quality cuts are applied to our distribution, we expect a distribution like that in the background-free case.

The histograms in Figures 4.4 and 4.7 express the fraction of signal events to background events per bin in the recoil mass distribution. This is examined so as to get an idea of how well our criteria separates signal and background. For the peak at 10.6 GeV/c², the ratio of signal events to background events is approximately 1.35% and 1.24% in Phase II and Phase III, respectively. Thus, without applying any selection criteria, identifying the resonance is unlikely; extrapolating from this percentage, for every pion that we tag as signal to the existence of $\Upsilon(6S)^+$, there will be 70 or more originating from non-$\Upsilon(6S)$ decays.

The separating power of $R_2$ in signal-continuum background discrimination can be seen in Figures 4.5a and 4.8a. With log event scale, it is simple to see that the number pions created in $\tau^+\tau^-$ events peak in a region of the $R_2$ distribution where there are almost no signal pions. This is a result of $\tau^+\tau^-$ events created at higher momentum, restricting the event shape to be jet-like, rather than unbiased, spherically symmetric event shape of lower momentum events, like our signal. The peak of the $R_2$ distribution in tau pairs varies from the quark-based continuum, as it is a QED process. While the criterion employed by Belle, $R_2 < 0.3$, omits a number of signal events, we will see later in this chapter that these events were sacrificed for lower background contributions. We will also attempt to see if we can optimize this criteria, by changing the upper bound of $R_2$ values selected. The overlayed gold region indicates the range of $R_2$ values assumed by pions that originate

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>dz</td>
<td>Point of detection: $z$ component displacement with respect to the interaction point. Sets maximum tolerated distance for particles to be considered as originating from the IP. Beam background particles are not created at interaction point.</td>
<td>$dz &lt; 2\text{cm}$</td>
</tr>
<tr>
<td>dr</td>
<td>Point of detection: radial displacement with respect to the interaction point. Sets maximum tolerated distance for particles to be considered as originating from the IP. Beam background particles are not created at interaction point.</td>
<td>$dr &lt; 0.3\text{cm}$</td>
</tr>
</tbody>
</table>

Figure 4.2: Selection Criteria Implemented in 2016 Belle Analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>piPIDe</td>
<td>Pion particle ID: The probability that a tagged pion is an electron.</td>
<td>$\text{PID}_e &lt; 0.9$</td>
</tr>
<tr>
<td>piDLLK</td>
<td>Delta Log Likelihood: Ratio of $\pi$ over $K$ likelihoods, derived from subdetectors</td>
<td>$\text{DLLK} &gt; \log(0.1)$</td>
</tr>
<tr>
<td>piDLLP</td>
<td>Delta Log Likelihood: Ratio of $\pi$ over $K$ likelihoods, derived from subdetectors</td>
<td>$\text{DLLP} &gt; \log(0.1)$</td>
</tr>
</tbody>
</table>

Figure 4.3: Selection Criteria Implemented in 2016 Belle Analysis continued.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>Reduced Fox Wolfram Moment: Ratio of “jet-like” event behaviour to “spherical”, low momentum events</td>
<td>$R_2 &gt; 0.3$</td>
</tr>
</tbody>
</table>

To exclude particles misidentified as pions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>To exclude pions produced in continuum events.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>To exclude pions produced in beam background.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>dz</td>
<td>Point of detection: $z$ component displacement with respect to the interaction point. Sets maximum tolerated distance for particles to be considered as originating from the IP. Beam background particles are not created at interaction point.</td>
<td>$dz &lt; 2\text{cm}$</td>
</tr>
<tr>
<td>dr</td>
<td>Point of detection: radial displacement with respect to the interaction point. Sets maximum tolerated distance for particles to be considered as originating from the IP. Beam background particles are not created at interaction point.</td>
<td>$dr &lt; 0.3\text{cm}$</td>
</tr>
</tbody>
</table>

To exclude particles misidentified as pions.
from pairs that give recoil mass $h_b(1P)$ and also have singular recoil mass within tolerance of $Z_b^+$ mass used by Belle, $10.59 \text{ GeV/c}^2 < M_{\text{rec,}\pi} < 10.67 \text{ GeV/c}^2$.

The variables that allow us to distinguish between pions resulting from $e^+e^-$ collisions, and those that originate from stray beam electrons interacting with matter are $dz$ and $dr$. Figures 4.5b, 4.8b, show that the $z$-displacement from the interaction point to point of detection is not useful in distinguishing continuum and signal events. We note that as continuum events occur as $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow \tau^+\tau^-$, continuum pions will be created at the interaction point just as signal would. The $dz$ distribution demonstrates that considering subsets of smaller $dz$ omits as much signal as it does continuum in both phases, meaning it is not favourable to cut on this. This same trend is demonstrated in the $dr$ distributions Figures 4.5c and 4.8c, so we will use the same Belle cut in our analysis. We should see that once the cut is performed, the peaks of recoil mass in Phase III are softened, as we remove detected far from the point of interaction.

The final three variables to consider are those related to particle identification. Their distributions in Phase II and Phase III demonstrate their performance. We see in Figures 4.6b, 4.6c and their Phase III counterparts that the number of correctly identified pions increases with DLLK and DLLP, similarly that in Figure 4.6a that
the number of true pions increases with a lesser electron identification probability. Again, we see that these variables do not discriminate between continuum and signal; considering subsets of pions with higher likelihood to be a pion over a kaon or pion over a proton, or with lower electron identity probability does not vary the amount of continuum events admitted. Again, for this reason we will not restrict our subset any further than what was implemented at Belle based on these values. We should find that the increased vertexing capability of the Belle II detector allows for better identified pions even with the same cuts, than with that of the original Belle detector.

We now examine the distributions after the quality cuts(Figures 4.11,4.12,4.13,4.14) specifically examining the effect with and without R2. We will consider the resultant power of each cut on recoil mass distribution in a signal-to-background plot. For Phase II, we see the signal to background ratio increase to 2% after quality cuts and 3.4% after including the quality and R2 cuts. Phase III similarly increases to 1.81% and to 2.9%. The impact of the selection criteria is especially evident in Phase III distributions, as we see the higher recoil mass beam background contribution diminish as predicted. Reflecting on the performance of the original Belle criteria between the phases seems to be near-identical, suggesting that this analysis can be efficiently run in Phase II and Phase III.
Even after applying the Belle cut to minimise the contribution from continuum pions, R2<0.3, we still see a large amount of background processes that conceal our measurements of the $Z_0^+$ resonance in single pion recoil data. We can analyse if the selection of pions according to $R2<0.3$ is the most efficient cut on the Reduced Fox Wolfram Moment, or if a different value can save more pions, whilst removing more irrelevant pions. This is done by considering the integrated significance. The significance of a peak can be quantified as $\sigma = \frac{N_s}{\sqrt{N_s + N_B}}$, where $N_s$ and $N_B$ are the number of signal and background event in the vicinity of the peak. This quantity is derived from treating our measurements as a stochastic process (true, as we have invoked MC techniques), which implies that our measurements are Poisson distributed. With the total number of counts being $N_s + N_B$, we can estimate the standard deviation to be $\sigma = \sqrt{N_s + N_B}$, from the Poisson distribution assumption. Thus, to measure if the number of signal events are consistent with background, we can divide the number of signal events by $\sigma$, to see how many standard deviations the number of signal events are from the mean. This gives us an indication of how probably the number of signal events are a random fluke within background, or a true anomalous process.
In this case, we want to choose to cut on some R2 value, \( r < 1 \), such that the subset of events with \( R2 \) between \([0, r]\) has the largest significance. In this way, we can perform the best cut on the recoil mass distribution to eliminate background and retain signal pions. We produce a figure of merit plot, that demonstrates how \( \Sigma \) changes depending on our choice of \( R2 \) cut.

Figure 4.15 demonstrates that \( R2 < 0.3 \) is not the most efficient cut. We perform the suggested cut, \( R2 < 0.135 \), with the results demonstrated in Figure 4.16 and Figure 4.17. With signal to background ratio of 7.1% in Phase II and 5.8% in Phase III, we see large improvement with this new cut over the one used in Belle. Despite having already demonstrated an improvement in selection criteria performance implemented in Belle II MC, we can further attempt to improve continuum suppression. Within the BASF2 software, we have access to 32 variables associated with continuum suppression, of which \( R2 \) is one. We will not, however, test all 32 variables to cut upon; we look to a machine learning and multivariate analysis package for ROOT in the next section, to create a signal-background classifying variable from the continuum suppression variables for us.
**4.3 Multivariate Analysis with TMVA**

The *Toolkit for Multivariate Data Analysis with ROOT*, or *TMVA*, is a set of software tools integrated into ROOT that can be used in analyses where a number of variables can describe a scenario, in our case, the 32 variables that have varying separating power of signal and continuum events. TMVA methods involve providing a sample of known background events, known signal event and the set of variables that may have unique distributions over signal and background. From this, the program explores which combination of variables create the most distinct distributions between signal and background, outputting this variable (the *classifier*) to the user. The toolkit can also be used to test the classifier on separate sample of data, to measure how well it performs in classifying an event as either signal or background.

For our analysis, we use the *boosted decision tree* (BDT) multivariate classification method. It is relatively simple when compared to the other methods, especially as we already have the complexity of 32 variables. The specifics of the classification method can be found in the *TMVA Users Guide* [19], but a brief summary is provided here. It is named thusly as it’s method can be represented by a tree diagram, with each level producing two branches from the “decision” to cut on a data set —one branch consistent with the cut and the second branch it’s complement. In our case, we input a sample of signal and background MC and the toolkit registers...
the origin of each event, before mixing them together. The toolkit then “grows” a decision tree by making a
series of cuts on various continuum suppression variables, attempting to split the mixed sample into background
and signal. The “boost” occurs when the number of background and signal events for a tree are tallyed, where
each decision sequence is assigned a weighting. Those sequences that perform worse receive a higher weighting,
meaning the method will avoid performing cuts of higher weighting. The method repeats until the data is
separated into signal and background and returns a classifier variable based on the successful decision sequence,
normalised so that a value of -1 indicates an event is background-like and 1 is signal-like.

Once the classifier is trained, it can be implemented in new data. Due to the lack of enough Υ(6S) samples,
we divide our sample in half, with half to train the classifier and half to test the classifier. The files were divided
according to the order the events were detected, with odd numbered events becoming training samples and even
numbered events becoming testing samples. Due to the MC method of generation, the outcome of each event is
independent of the one before it, meaning we have introduced no biases by using events from the same sample
file.

Ultimately, we do not use all 32 continuum variables. This is because we want to avoid using any continuum

Figure 4.9: Phase III: PID Selection Criteria. Distribution of piPIDe without logarithmic scale is omitted for clarity.
Table 4.1: Numerical summary of event, the number of pions contributed from each process: It is important to note that due to computational constraints, running over all 50 fb\(^{-1}\) of MC events were not feasible. Instead, the number of events in one sample, \(n_{\text{sample}}\), were scaled by factor \(k\) so as to obtain the number of events in 50 fb\(^{-1}\). This was performed as \(n_{50\text{fb}\^{-1}} = k \times n_{\text{sample}}\). For the signal MC, 80000 events were generated. To evaluate the number of events here, we applied \(n_{50\text{fb}\^{-1}} = \mathcal{L} \sigma\), where \(\sigma\) is the cross-section of signal event measured in the 2016 Belle analysis. We took \(\sigma=2.5\) pb from the Born cross section fit in Figure 1.14b. From this, the signal event weighting could be derived.

\[
\text{Phase} \quad \text{Process} \quad \text{Event weighting} \quad \text{No. of pions}
\hline
\text{II} \quad \text{\(e^+e^- \to u\bar{u}\)} \quad \frac{9.8 \times 10^8}{813.7129916} \quad 1.27 \times 10^8
\text{II} \quad \text{\(e^+e^- \to d\bar{d}\)} \quad \frac{9.8 \times 10^8}{208.049842} \quad 9.27 \times 10^7
\text{II} \quad \text{\(e^+e^- \to s\bar{s}\)} \quad \frac{9.8 \times 10^8}{207.9417293} \quad 2.33 \times 10^7
\text{II} \quad \text{\(e^+e^- \to \tau^+\tau^-\)} \quad \frac{9.8 \times 10^8}{471.111111} \quad 4.20 \times 10^6
\text{II} \quad \text{\(e^+e^- \to c\bar{c}\)} \quad \frac{9.8 \times 10^8}{696.3218756} \quad 1.27 \times 10^8
\text{II} \quad \text{\(e^+e^- \to Z^+_b \rightarrow h_b(1P)\pi^+\pi^-\)} \quad 3.125 \quad 1.25 \times 10^6
\text{III} \quad \text{\(e^+e^- \to u\bar{u}\)} \quad \frac{9.8 \times 10^8}{831.7129916} \quad 1.48 \times 10^8
\text{III} \quad \text{\(e^+e^- \to d\bar{d}\)} \quad \frac{9.8 \times 10^8}{207.8931991} \quad 3.69 \times 10^7
\text{III} \quad \text{\(e^+e^- \to s\bar{s}\)} \quad \frac{9.8 \times 10^8}{225.7750003} \quad 4.11 \times 10^7
\text{III} \quad \text{\(e^+e^- \to \tau^+\tau^-\)} \quad 471 \quad 1.01 \times 10^7
\text{III} \quad \text{\(e^+e^- \to c\bar{c}\)} \quad \frac{9.8 \times 10^8}{695.5209314} \quad 2.02 \times 10^6
\text{III} \quad \text{\(e^+e^- \to Z^+_b \rightarrow h_b(1P)\pi^+\pi^-\)} \quad 3.125 \quad 1.79 \times 10^6
\hline
\]

Figure 4.10: Numerical summary of event, the number of pions contributed from each process: It is important to note that due to computational constraints, running over all 50 fb\(^{-1}\) of MC events were not feasible. Instead, the number of events in one sample, \(n_{\text{sample}}\), were scaled by factor \(k\) so as to obtain the number of events in 50 fb\(^{-1}\). This was performed as \(n_{50\text{fb}\^{-1}} = k \times n_{\text{sample}}\). For the signal MC, 80000 events were generated. To evaluate the number of events here, we applied \(n_{50\text{fb}\^{-1}} = \mathcal{L} \sigma\), where \(\sigma\) is the cross-section of signal event measured in the 2016 Belle analysis. We took \(\sigma=2.5\) pb from the Born cross section fit in Figure 1.14b. From this, the signal event weighting could be derived.

suppression variables that are linearly correlated with our recoil variable. Cutting on these may artificially shape the background distribution to the shape of the signal, giving false significance to peak. To ensure this was not the case, we examined 2D histograms of single pion recoil mass versus each continuum suppression variable, looking to exclude those that exhibited linear correlation. Those that remain are listed, with their individual separating power, in Figure 4.20.

Figure 4.18 and Figure 4.19 demonstrate the distribution of the classifier. The signal contribution peaks in the positive values, while \(q\bar{q}\) contribution peaks at -0.1 and taupair contribution peaks at -0.3. This is consistent
Recoil mass from single pion: with Belle quality and R2<0.3 cuts

Signal/Background: Recoil Mass

Integrated Significance: R2

Figure 4.13: Phase III, after Belle quality cuts

Figure 4.14: Phase III, after all Belle cuts.

Figure 4.15: Figure of Merit Phase II: The integrated significance is evaluated for subsets of pions with R2 between 0 and r, where r values are R2 cut values, here on the x axis. The gold line indicates the integrated significance of the original R2 < 0.3 cut, with Σ = 0.44. The blue dotted line corresponds to the cut R2 < 0.135, which gives the maximum Σ = 0.54. The integrated significance plot for Phase III is consistent with this, admitting the same cut R2 < 0.135.

with negative values associated with background and positive values associated with signal. If we find that a cut such that BDT > 0 maximises integrated significance, we can be sure our classifier has been trained correctly.

We proceed to constructing a BDT figure of merit, in the same way we did for optimising the R2 cut. The optimal cut is demonstrated in Figure 4.21. The result of this cut in Phase II and Phase III is demonstrated in Figures 4.22 and 4.23.

R2 is listed as the most powerful separating variable in Figure 4.20. Nevertheless, according to the signal to background ratio in the recoil mass distribution after cutting on the classifier output, implementing many continuum suppression variables in TMVA has more separation power in the 10.61 GeV/c² region that using R2 alone. The ratio is as high as 14% in Phase II and 10.2% in Phase III, tau pair contribution has been completely eradicated in this Phase. It is important to note that with further cuts, from least effective R2 < 0.3 to most...
Figure 4.16: Phase II, after quality cuts and R2 <0.135.

Figure 4.17: Phase III, after quality cuts and R2 <0.135.

effective BDT <0.0669, we see further deviations from a smoothly changing number of events per bin. Recall our need to weight the data, as described in 4.10. When the weight of each event becomes non-negligible compared to the scale of events, more fluctuations can be seen. This reduction in statistics should be clarified in further studies, as fluctuation in data points will affect the fit quality we will perform in Chapter 5.

4.4 After the Cuts

We have investigated a number of selection criteria, with emphasis on optimising continuum suppression. In the next chapter, we will finally measure the recoil mass of $\pi_1$, by fitting data points to a function. The mean of this function will give us the mass of $Z_1^+$ and we will compare these values across selection criteria and Phase. Before doing so, we summarise the selection criteria and the selection efficiencies in Figure 4.24 below.
Figure 4.18: Phase II Classifier Distribution.

Figure 4.19: Phase III Classifier Distribution.
<table>
<thead>
<tr>
<th>Continuum Suppression Variables</th>
<th>Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_2$</td>
<td>Reduced Fox-Wolfram Moment, the ratio between momenta of jet-like events and momenta of spherical events</td>
</tr>
<tr>
<td>ThrustO</td>
<td>Magnitude of non-B products thrust axis.</td>
</tr>
<tr>
<td>cc9</td>
<td>CleoCone9, sum of momenta of non-B products with ThrustO axis directed between 80 to 90° of B-meson axis</td>
</tr>
<tr>
<td>$et$</td>
<td>Transverse energy</td>
</tr>
<tr>
<td>cc8</td>
<td>CleoCone8, sum of momenta of non-B products with ThrustO axis directed between 70 to 80° of ThrustB axis</td>
</tr>
<tr>
<td>hoo4</td>
<td>Modified Fox-Wolfram Moment</td>
</tr>
<tr>
<td>hso02</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso12</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso10</td>
<td>Modified Fox-Wolfram moments</td>
</tr>
<tr>
<td>CostTBTO</td>
<td>Cosine of angle between ThrustB axis and ThrustO axis.</td>
</tr>
<tr>
<td>hoo0</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso00</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hoo1</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso20</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hoo3</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso22</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso04</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso14</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso24</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>ThrustB</td>
<td>Magnitude of B meson thrust</td>
</tr>
<tr>
<td>hso03</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>hso01</td>
<td>Modified Fox-Wolfram moment</td>
</tr>
<tr>
<td>CostTBz</td>
<td>Cosine of the angle between B meson axis and z-axis</td>
</tr>
</tbody>
</table>

**Figure 4.20:** List of Continuum Suppression Variables implemented in our analysis. As a SuperB factory, these Belle II variables are defined assuming that processes occur as $\Upsilon(4S) \rightarrow B\bar{B}[?]$. In our $\Upsilon(6S) \rightarrow Z_0^+\pi^-$, we saw in the phase space diagram of Figure 3.5 that the $\pi_1$ event was spherical. As the B mesons are roughly spherical as well, we could consider these definitions as referring to $\pi_1$ in our case.

**Figure 4.21:** Figure of Merit Phase II: The integrated significance is evaluated for subsets of pions with BDT classifier between $b$ and 1, where $b$ values are BDT cut values, on the x axis. The blue dotted line corresponds to the cut $\text{BDT} < 0.0669$, which gives the maximum significance in both Phase II and Phase III.
Figure 4.22: Phase II, after quality cuts and BDT cut.

Figure 4.23: Phase III, after quality cuts and BDT cut.
<table>
<thead>
<tr>
<th>Phase</th>
<th>Process</th>
<th>No. of π (initial)</th>
<th>No. of π (after quality cuts)</th>
<th>% retained</th>
<th>No. of π (after quality and R2 cuts)</th>
<th>% retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>c ¯c</td>
<td>1.27×10⁸</td>
<td>6.71×10⁷</td>
<td>52.89</td>
<td>4×10⁷</td>
<td>31.51</td>
</tr>
<tr>
<td>II</td>
<td>d ¯d</td>
<td>2.33×10⁷</td>
<td>1.27×10⁷</td>
<td>54.67</td>
<td>7.14×10⁶</td>
<td>30.68</td>
</tr>
<tr>
<td>II</td>
<td>s ¯s</td>
<td>2.41×10⁷</td>
<td>1.18×10⁷</td>
<td>48.89</td>
<td>6.56×10⁶</td>
<td>27.24</td>
</tr>
<tr>
<td>II</td>
<td>τ⁺τ⁻</td>
<td>4.2×10⁶</td>
<td>2.1×10⁶</td>
<td>49.97</td>
<td>2.96×10⁵</td>
<td>7.04</td>
</tr>
<tr>
<td>II</td>
<td>u ¯u</td>
<td>9.27×10⁷</td>
<td>5.1×10⁷</td>
<td>55.04</td>
<td>2.78×10⁷</td>
<td>29.98</td>
</tr>
<tr>
<td>II</td>
<td>All Continuum</td>
<td>2.71×10⁸</td>
<td>1.45×10⁸</td>
<td>53.38</td>
<td>8.18×10⁷</td>
<td>30.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase</th>
<th>Process</th>
<th>No. of π (after quality and optimised R2 cuts)</th>
<th>% retained</th>
<th>No. of π (after quality and BDT cuts)</th>
<th>% retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>c ¯c</td>
<td>1.22×10⁴</td>
<td>9.65</td>
<td>5.55×10⁶</td>
<td>4.38</td>
</tr>
<tr>
<td>II</td>
<td>d ¯d</td>
<td>2.09×10⁶</td>
<td>8.99</td>
<td>8.76×10⁵</td>
<td>3.77</td>
</tr>
<tr>
<td>II</td>
<td>s ¯s</td>
<td>2.05×10⁶</td>
<td>8.52</td>
<td>7.97×10⁵</td>
<td>3.31</td>
</tr>
<tr>
<td>II</td>
<td>τ⁺τ⁻</td>
<td>5.28×10⁴</td>
<td>1.26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>u ¯u</td>
<td>8.32×10⁶</td>
<td>8.98</td>
<td>3.35×10⁶</td>
<td>3.62</td>
</tr>
<tr>
<td>II</td>
<td>All Continuum</td>
<td>2.48×10⁷</td>
<td>9.13</td>
<td>1.06×10⁷</td>
<td>3.9</td>
</tr>
<tr>
<td>II</td>
<td>Signal</td>
<td>5.27×10⁵</td>
<td>42.17</td>
<td>4.4×10⁵</td>
<td>35.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase</th>
<th>Process</th>
<th>% retained</th>
<th>No. of π (after quality and BDT cuts)</th>
<th>% retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>c ¯c</td>
<td>1.02×10⁷</td>
<td>10.86</td>
<td>2.2×10⁷</td>
</tr>
<tr>
<td>III</td>
<td>d ¯d</td>
<td>1.29×10⁶</td>
<td>10.14</td>
<td>3.75×10⁶</td>
</tr>
<tr>
<td>III</td>
<td>s ¯s</td>
<td>1.56×10⁶</td>
<td>9.48</td>
<td>3.9×10⁶</td>
</tr>
<tr>
<td>III</td>
<td>τ⁺τ⁻</td>
<td>1.96×10⁷</td>
<td>1.13</td>
<td>1.14×10⁵</td>
</tr>
<tr>
<td>III</td>
<td>u ¯u</td>
<td>6.58×10⁶</td>
<td>9.96</td>
<td>1.47×10⁷</td>
</tr>
<tr>
<td>III</td>
<td>All Continuum</td>
<td>1.96×10⁷</td>
<td>10.14</td>
<td>4.44×10⁵</td>
</tr>
<tr>
<td>III</td>
<td>Signal</td>
<td>6.76×10⁵</td>
<td>43.84</td>
<td>7.83×10⁵</td>
</tr>
</tbody>
</table>

Figure 4.24: Selection efficiencies for varying combinations of continuum suppression criteria
Chapter 5

Fitting the Results

We have successfully applied selection criteria to our signal and background MC, with the intention of reducing the number of background pions that are misidentified as other final state particles, as well as those that originate from beam-induced events or continuum events. These criterion have rejected background pions whilst preserving the number of signal pions that will contribute to our measurement of the $Z^+_b$ mass. To continue towards this measurement, we fit the recoil mass distributions from signal MC and background MC with probability density function hypotheses. The fit parameters derived can then be implemented in future true $\Upsilon(6S)$ collision data, to see if the data is consistent with the presence of $Z^+_b$ described by our signal MC. To perform our fits, we will use the RooFit, a further toolkit for data modelling in ROOT.

In Chapter 4, we applied the Belle selection criteria with three different continuum suppression conditions to the signal and background recoil mass distributions: the original Belle condition $R2 < 0.3$, the max integrated significance condition $R2 < 0.135$ and the TMVA classifier condition of relevant continuum suppression variables, $\pi^-\text{BDT} < 0.0669$. All three cases will be fit, so that we can consider the parameters of each probability density function, as a measure to identify the best selection criteria combination.

5.1 Fitting the Signal MC

Recalling the method of fitting used in the 2016 Belle analysis, as explained in Chapter 1, we have chosen to go an alternate route. We implemented the $9.8 \text{ GeV}/c^2 < M_{\text{rec,}\pi^+\pi^-} < 10.0 \text{ GeV}/c^2$ as a preselection requirement on our dipion pairs, so we are not able to to fit the $M_{\text{rec,}\pi^+\pi^-}$ resonance for ranges of $M_{\text{rec,}\pi}$. As an MC analysis, we have distinct pion samples from background MC and signal MC, so we will instead fitting those separately.

We fit the single pion recoil mass of our signal MC as the convolution of two probability density functions: the sum of two Gaussians, for the $\pi_1$ and $\pi_2$ peak and a Chebychev polynomial, which was implemented in the 2016 Belle analysis to fit combinatoric background. The Chebychev polynomial fit is the most precarious contribution to the overall fit, as we have a choice polynomial degree. RooFit only supports up to 6th degree Chebychev polynomials, so we vary the degree for each fit, to choose the degree that minimises the $\chi^2$ degrees of freedom. The table in Figure 5.1 demonstrates that $\chi^2$ is consistently smaller for the BDT continuum cuts than both R2 cuts, across the same degree fit. It should be noted that the 2016 Belle analysis used fourth order Chebychev polynomials for their fits —whether it is significant that we have signal fits to third, fifth and sixth order is unknown. We have demonstrated that not only does using TMVA methods to consider most continuum suppression variables maximise the signal-to-background ratio, but we have seen here that the signal MC itself is better fit with this cut. It’s only short coming is that it has the largest statistical error, $\sigma$ —but not not by much!
<table>
<thead>
<tr>
<th>Phase</th>
<th>Chebychev degree</th>
<th>$\chi^2$ for BDT $&gt;0.0669$</th>
<th>$\chi^2$ for $R2 &lt;0.135$</th>
<th>$\chi^2$ $R2 &lt;0.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>2</td>
<td>31.8425</td>
<td>65.3616</td>
<td>92.2159</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>21.6834</td>
<td>41.5388</td>
<td>64.4064</td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>24.7557</td>
<td>42.8642</td>
<td>66.3386</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td><strong>21.60037</strong></td>
<td><strong>32.8447</strong></td>
<td>51.2359</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>32.1625</td>
<td>33.2541</td>
<td><strong>50.3752</strong></td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>28.5728</td>
<td>53.9344</td>
<td>80.7305</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td><strong>28.3198</strong></td>
<td>48.5941</td>
<td>69.9644</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>31.8065</td>
<td>48.6058</td>
<td>70.1881</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>41.6767</td>
<td><strong>48.5068</strong></td>
<td><strong>69.1766</strong></td>
</tr>
<tr>
<td>III</td>
<td>6</td>
<td>68.4764</td>
<td>56.2377</td>
<td>81.6745</td>
</tr>
</tbody>
</table>

Figure 5.1: $\chi^2$ values for signal MC pion recoil mass fit. The coefficients of the Chebychev polynomial of the given degree is calculated such that the convolution of the polynomial and the Gaussians that fit the $\pi_1$ and $\pi_2$ peaks parameterise the full distribution. We begin with quadratic degree due to the concavity of the combinatoric background. Final fits are indicated in bold.

### 5.2 Fitting the Background MC

For completeness, we fit the background MC, for future use in real data. Chebychev polynomials are used again, this time used as the sole function to fit the continuum contribution to the recoil mass. We proceed in the same way as before; vary the degree of the Chebychev polynomial to examine which degree minimises the $\chi^2$ fit value.

A number of fits failed to converge meaningfully, mostly in Phase II for $R2 <0.3$. The reason for this remains unknown.

### 5.3 Systematic Errors

The design of this analysis is not perfect. We consider some places for improvement below.

- A number of $R2 <0.3$ fits failed. The fit quality could be improved by fitting beam background-free MC, then forcing these parameters to the distribution with beam background. A further Chebychev polynomial could be implemented to quantify the beam background contribution, which may “smooth” discontinuous points that struggle to be fit.

- Further MC campagins have occured since this analysis took place, meaning larger data samples of $\Upsilon(6S)$ decays are available. The effect of limited statistics, especially with the need to have statistically independent testing and training samples for the TMVA process, that led to discontinuous peaks could be minimized.

- We opted to use the $h_0(1P)$ mass as preselection criteria, to fit the $Z^+_t$ distribution. As we based our work from the 2016 analysis, a further activity could be to compare the efficacy of both methods.
Figure 5.2: Phase II Signal Fitting (gold line). The amplitudes of the double Gaussian (black line) and Chebychev polynomial (blue line) are exaggerated for visibility. Chebychev polynomial coefficients are denoted in the box above.
Figure 5.3: Phase III Signal Fitting (gold line). The amplitudes of the double Gaussian (black line) and Chebychev polynomial (blue line) are exaggerated for visibility.
<table>
<thead>
<tr>
<th>Phase</th>
<th>Chebychev degree</th>
<th>$\chi^2$ for BDT $&gt;0.0669$</th>
<th>$\chi^2$ for $R^2 &lt;0.135$</th>
<th>$\chi^2$ $R^2 &lt;0.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>2</td>
<td>3.51029</td>
<td>13.3612</td>
<td>failed</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>1.88154</td>
<td>6.34208</td>
<td>failed</td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>1.670827</td>
<td>4.10372</td>
<td>failed</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>1.60895</td>
<td>3.35677</td>
<td>failed</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>1.52621</td>
<td>3.33982</td>
<td>failed</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>1.58336</td>
<td>failed</td>
<td>failed</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>1.58525</td>
<td>3.24757</td>
<td>failed</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>1.57734</td>
<td>3.10684</td>
<td>7.33823</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>1.3391</td>
<td>2.08196</td>
<td>5.06741</td>
</tr>
<tr>
<td>III</td>
<td>6</td>
<td>1.3294</td>
<td>1.95905</td>
<td>4.4392</td>
</tr>
</tbody>
</table>

Figure 5.4: $\chi^2$ values for background MC pion recoil mass fit. The coefficients of the Chebychev polynomial parameterise the full background distribution. We begin with quadratic degree due to the concavity of the combinatoric background. Final fits are indicated in bold.

![Figure 5.4: $\chi^2$ values for background MC pion recoil mass fit.](image)

Figure 5.5: Phase II Background Fitting (purple line). The $R^2 <0.3$ background was unable to be fit.

Figure 5.5: Phase II Background Fitting (purple line). The $R^2 <0.3$ background was unable to be fit.
Figure 5.6: Phase III Background Fitting (purple line).
Chapter 6

The Future: To $qqq$ and Beyond

Our analysis is complete. We have found the following values for $Z_b^+$ mass fitted from the recoil mass of pions found in $\Upsilon(6S)$ decays of Belle II MC. Unsurprisingly, the Phase III fit after implementing the BDT classifier selection criteria was the closest to matching the mass $10.6072\text{ GeV/c}^2$ dictated by the decay tables. However, all selection criteria were within error of this mass. We have thus demonstrated that Phase II has potential in an exotic hadron search, despite lacking in vertexing and operating with diminished tracking efficiency, can gather just as significant data as in Phase III.

Phase II

\begin{align*}
M_{\text{rec,}\pi,R2<0.3} &= (10.606506 \pm 0.000067) \text{ GeV/c}^2, \sigma_{R2<0.3} = 0.016419 \pm 0.000091 \\
M_{\text{rec,}\pi,R2<0.135} &= (10.606571 \pm 0.000083) \text{ GeV/c}^2, \sigma_{R2<0.133} = 0.01613 \pm 0.00011 \\
M_{\text{rec,}\pi,BDT>0.0669} &= (10.60683 \pm 0.0001) \text{ GeV/c}^2, \sigma_{\pi,BDT>0.0669} = 0.01835 \pm 0.00015
\end{align*}

Phase III

\begin{align*}
M_{\text{rec,}\pi,R2<0.3} &= (10.606776 \pm 0.000071) \text{ GeV/c}^2, \sigma_{R2<0.3} = 0.019138 \pm 0.000099 \\
M_{\text{rec,}\pi,R2<0.135} &= (10.606760 \pm 0.000090) \text{ GeV/c}^2, \sigma_{R2<0.135} = 0.01973 \pm 0.00013 \\
M_{\text{rec,}\pi,BDT>0.0669} &= (10.60734 \pm 0.000098) \text{ GeV/c}^2, \sigma_{\pi,BDT>0.0669} = 0.01824 \pm 0.00012
\end{align*}

The search for $Z_b^+$, however, is just about to begin. We have the parameters of our fits prepared, ready to apply to true collision data and to measure the agreement with the presence of $Z_b^+$. We found that all we await now is successful completion of the technical upgrade, so as to start looking for hints of $Z_b^+$. With the 10 year lifespan of the previous experiment, we can only hope that a Belle II exotic discovery happens within the decade. In the meantime, we have the option of using our new found TMVA methods to return to the original Belle data set used in 2016, to see if this analysis can extract further significance than what was previously documented.

Pursuing exotic mesons and exotic baryons is an exciting field; it challenges some of the first assumptions one learns as a particle physicist, that mesons are $q\bar{q}$ and baryons are $qqq$. The possibilities, so far, seem endless; why stop at just 4 quark mesons? Why not 6, 8, 10 quark groupings?! It is this “Dr. Frankenstein”-esque hadron building that led me to become an aspiring experimental particle physicist. I have thoroughly enjoyed developing an intuition for detector phenomenology as a Belle II analyst and I hope to continue this work in exotica at Belle II in higher research degrees and beyond.
Bibliography


