

Track reconstruction efficiency measurement using $e^+e^- \rightarrow \tau^+\tau^-$ events at Belle II

Prague 2020 - Laura Zani *

On behalf of the Belle II collaboration

Outline

- Motivation
- Experimental context: Belle II at SuperKEKB collider
- Measurement strategy:
 - Event selection and background suppression
 - Comparison to simulation
 - Calibration procedure
- Results

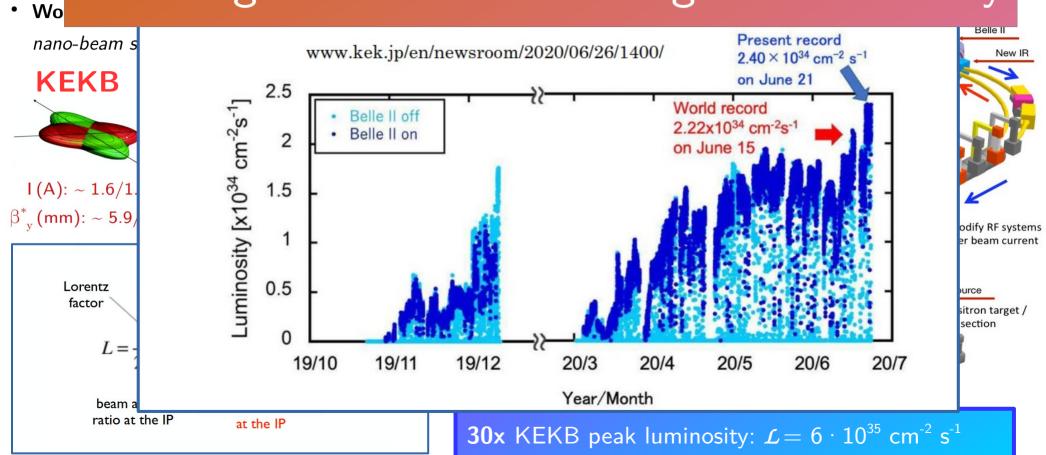
Motivation

- → Track reconstruction efficiency is a key performance driver for Belle II physics...
- Real detector != simulated detector
- GOAL: assess the systematic uncertainty due to track finding in physics analyses, based on the measured discrepancy (δ^*) in track reconstruction efficiency between simulation and data

Discrepancy,
$$\delta^* = 1 - \epsilon_{\text{DATA}}/\epsilon_{\text{MC}}$$

 B-factories: dedicated experiments at e+easymmetric-energy colliders

$$e^+e^- o \Upsilon(4S) \ [10.58 \ \text{GeV}] o B\overline{B}$$
 ...also a D, au factory

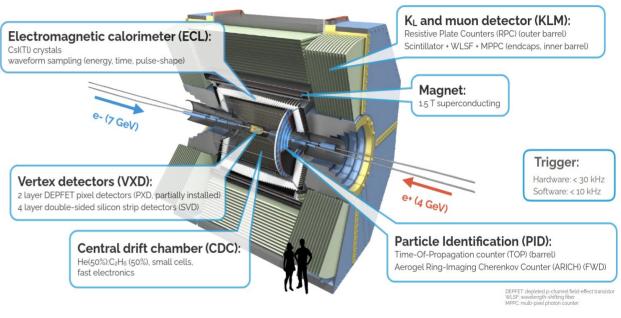

- Clean environment → lower background, high resolution
- Hermetic detector with excellent PID capability
- Efficient reconstruction of **neutrals** (π^0, η) and **missing energy** final states

SuperKEKB accelerator

World highest luminosity, applying the large crossing angle (83 mrad) e+ 4 GeV 3.6 A Belle II nano-beam scheme [arXiv:0709.0451]. e- 7 GeV 2.6 A **KEKB SuperKEKB** SuperKEKB New beam pipe & bellows $I(A): \sim 1.6/1.2$ X = 2 $I(A): \sim 3.6/2.6$ β^*_{v} (mm): ~ 5.9/5.9 \times 1/20 \longrightarrow β^*_{v} (mm): ~ 0.27/0.3 **KEK** Tsukuba, Japan Add / modify RF systems for higher beam current beam-beam beam Low emittance positrons Lorentz parameter to inject Positron source factor Damping ring New positron target / capture section geometrical reduction factors Low emittance gun Low emittance electrons to inject beam aspect vertical beta-function ratio at the IP at the IP **30x** KEKB peak luminosity: $L = 6 \cdot 10^{35}$ cm⁻² s⁻¹

L.Zani, ICHEP2020 - Track reconstruction efficiency on τ pairs at Belle II

Breaking the wall of world highest luminosity



L.Zani, ICHEP2020 - Track reconstruction efficiency on τ pairs at Belle II

Belle II detector

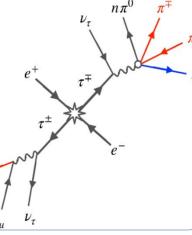
Phase 3: March 2019 - ...

Phase 3 FINAL GOAL: 50 ab⁻¹

Measurement strategy

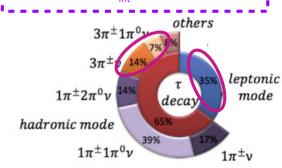
Tag & probe method on $e^+e^- \rightarrow \tau^+\tau^- \rightarrow (\ I + \nu \ \overline{\nu}\)\ (3\pi^\pm + \nu + n\pi^0)$

TAG: three good quality tracks with minimal requirements for particle identification (PID), satisfying $\Sigma q = \pm 1$


PROBE: 4th track in the event, satisfying looser selection requirements and conserving charge, $\Sigma q=0$.

Count the number of events were the probe track is found (N4) and not found (N3):

$$AxE = N4/(N4 + N3)$$


- A = detector acceptance,
- ξ = track reconstruction efficiency.

3x1-prong events

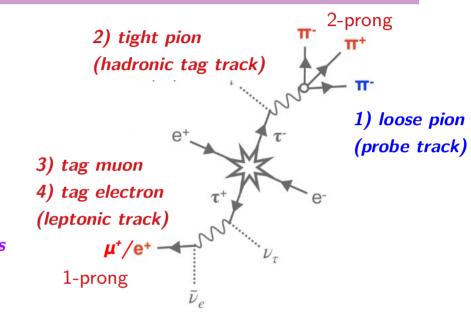
- Low multiplicity but high track density (boosted events)
- Investigate wide mediummomentum range (0.2 – 3.5 GeV/c)

 $\sigma_{ au au}$ (10.58 GeV) \sim 0.92 nb \rightarrow x BF x L $_{ ext{int}} = 1.2$ M events

All reprocessed 2019 data, $L_{int} = 8.8 \text{ fb}^{-1}$

100 fb⁻¹ Monte Carlo official production:

Signal: $e^+e^- \rightarrow \tau^+\tau^-$,

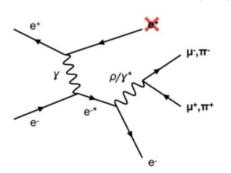

Background: $e^+e^- \rightarrow qq + low multiplicity$

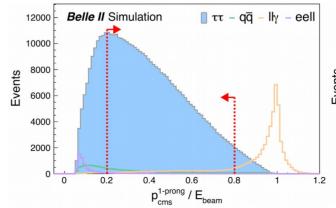
L.Zani, ICHEP2020 - Track reconstruction efficiency on τ pairs at Belle II

Event selection

- ECL triggers fired on data to provide unbiased samples
- Track Selection: define 4 track lists starting from good quality tracks (= coming from the interaction point, IP)
 - NO further selection on the probe track, not to bias the efficiency measurement
 - Tight pions (tag hadronic tracks) are a subset of loose pions
 - Apply PID to make lists orthogonal
- → Constrain the #candidates per list, but NOT the total #tracks

Muon channel		Electron	channel	
N3 sample:	N4 sample:	N3 sample:	N4 sample:	
#loose pion = 2	#loose pion = 3	# loose pion = 2	# loose pion = 3	
#tight pion = 2	#tight pion >= 2	#tight pion $= 2$	#tight pion >= 2	
#muon = 1	#muon = 1	#muon $= 0$	#muon = 0	
#electron = 0	# electron = 0	# electron = 1	#electron = 1	

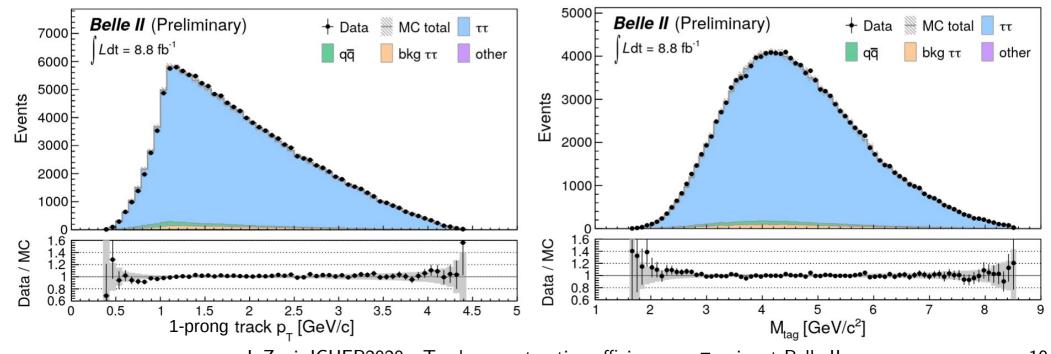

According to the charge of the 2-prong tracks we define:


- Opposite Sign sample (OS)
- Same Sign sample (SS)

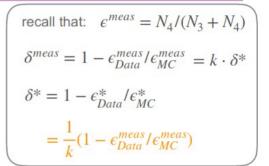

Background suppression

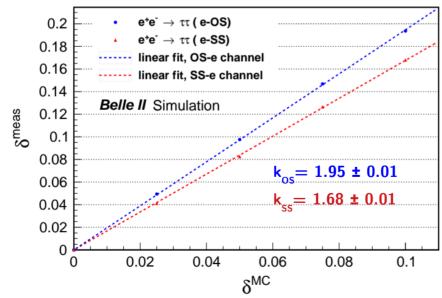
• Topology: require angular isolation of the 1-prong leptonic tag from all the other three hadronic tracks + good quality of the χ^2 of the fit to the 2-prong tracks vertex

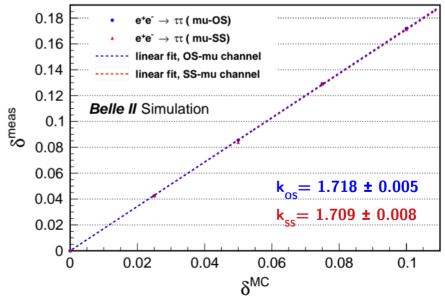
- Radiative QED and continuum qq rejection:
 - ⁻ 1-prong track momentum within 20% and 80% of the beam energy ($\sqrt{s/2}$)
 - constrain number of neutral pions and photons per event
 - minimum opening angle between the two tag pions
 - Selections on the invariant mass of the tag tracks and of the 2-prong tracks
- **Data-driven veto** against two-photon event contamination, $ee\gamma^* \rightarrow affecting$ the *Opposite Sign (OS)* electron channel



120

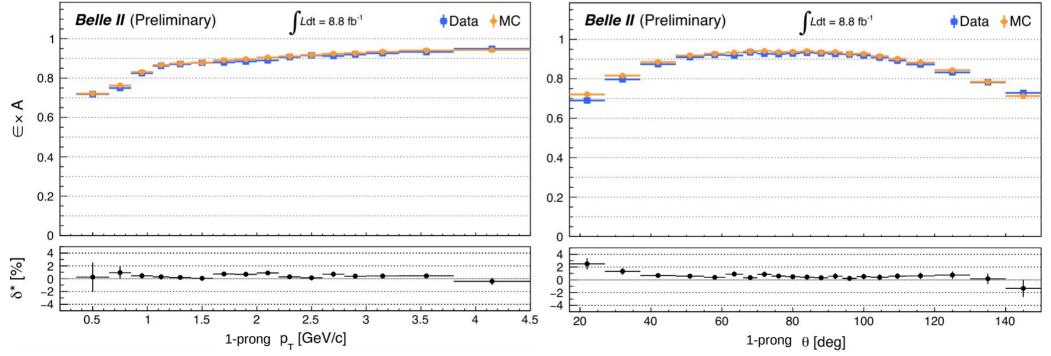

Data - MC comparison


- Data and simulation (signal + background) are compared after all selections
- Simulation scaled to data luminosity (8.8 fb-1) and weighted bin-by-bin with the measured **trigger efficiency** on data (see P.Rados talk from yesterday Operation performance session)



Calibration procedure

- Discrepancy estimator δ^{meas} calibrated to represent the true value (δ^*)
- Introduce known *per track* inefficiencies in signal simulation, $\tau\tau$ sample $(\delta_{MC}=2.5\%,\,5\%,\,7.5\%,\,10\%)$
- Extract k-factors from linear fits to the 2D distributions of δ^{meas} Vs. δ_{MC}

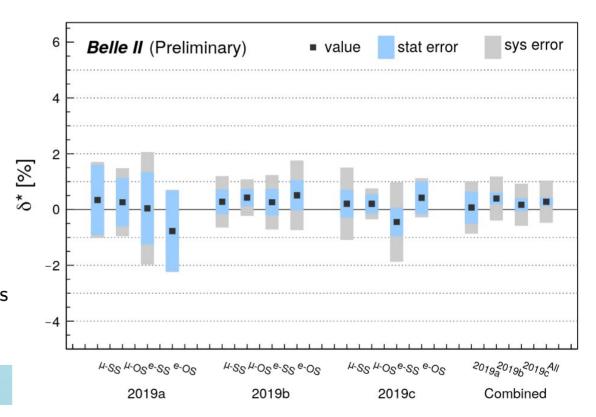


L.Zani, ICHEP2020 - Track reconstruction efficiency on τ pairs at Belle II

ExA measurement

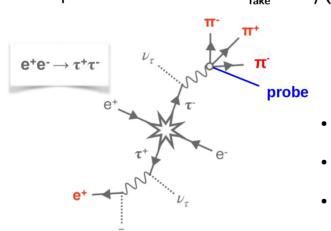
- ullet Remaining background estimated from simulation o background subtraction applied to data
- Efficiency $E \times A$ computed from the ratio N4/(N4+N3) for data and simulation, as well as calibrated discrepancies δ^* .

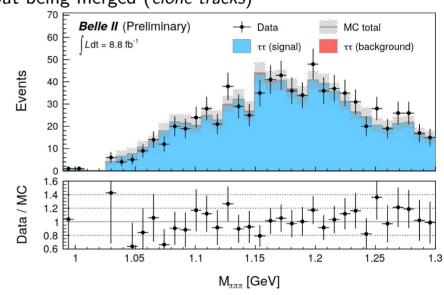
L.Zani, ICHEP2020 - Track reconstruction efficiency on τ pairs at Belle II


Results: calibrated discrepancy

• Calibrated data-MC discrepancies:

$$\delta^* = 1 - \epsilon_{Data}^* / \epsilon_{MC}^* = \frac{1}{k} (1 - \epsilon_{Data}^{meas} / \epsilon_{MC}^{meas})$$


- Systematic uncertainty contributions are included
- Dominated by charge dependence →
 expected to be improved after a better
 understanding of charge asymmetry effects


$$\delta^*_{\mbox{\tiny overall}} = 0.28 \pm 0.15 \mbox{ (stat)} \pm 0.73 \mbox{ (sys) } \%$$

Fake rate measurement

- Estimate the probability to reconstruct a *fake track* coming from: random combination of (beam) background hits; low-momentum tracks curling inside the detector without being merged (*clone tracks*)
- Analogue tag-and-probe technique
 - Fully reconstruct a 3x1 τ-pair event by requiring 4 tracks (tag)
 - Look for the 5th track (probe)
 - Compute the fake rate as $r_{\text{fake}} = N5/(N4 + N5)$

- Exploit full event kinematics to increase signal purity (measured on simulation)
- Scale yields in data for the measured signal purity: $r_{\mbox{\tiny fake}} = 0.97\,\pm\,0.34$ (stat)%
- Only preliminary evaluation of systematic uncertainty

L.Zani, ICHEP2020 - Track reconstruction efficiency on τ pairs at Belle II

Summary

- Belle II is taking data since the beginning of Phase 3, and continued successfully for all 2020 run periods!
- With a sample of ~ 9 fb⁻¹ data (**Belle II 2019**), we devise the strategy to measure the quantity **ExA** on data and simulation, by analyzing 3×1 -prong τ -pair decays:

$$\mathrm{e^{+}e^{-}}
ightarrow\, au^{+} au^{-}
ightarrow\,($$
 I $+$ v $\,\overline{\mathrm{v}}$ $)$ $(3\pi^{\pm}+\mathrm{v}+\mathrm{n}\pi^{0})$

• The overall calibrated discrepancy δ^* is measured to be:

$$0.28 \pm 0.15$$
 (stat) ± 0.73 (sys) %

- \rightarrow Prescription on how to assign systematic uncertainties for analyses dealing with tracks of transverse momentum [0.2 < p_ <3.5] GeV/c is provided
- The track reconstruction fake rate in Belle II data has been also measured exploiting τ -pair events and found to be 0.97 ± 0.34 (stat) % consistently with simulation.

Thanks for your attention!

backup

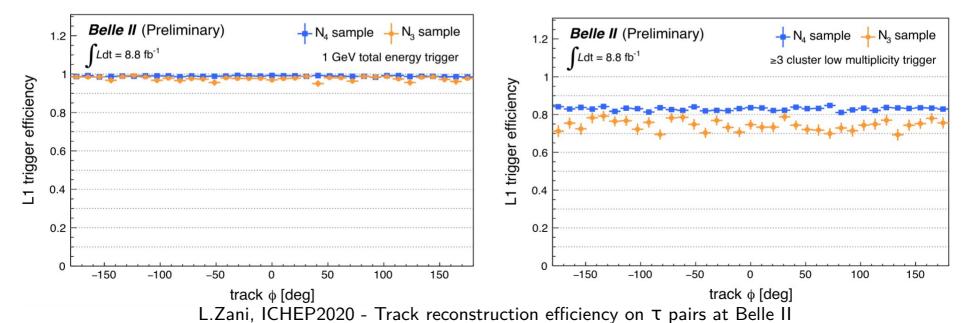
Belle II collaboration

Track selections

- The tighter pion tag
 candidates also satisfied
 the selections as looser
 pion probe candidate.
- N3 samples: no additional pion probe is needed \rightarrow $N_{pion}^{probe} = N_{pion}^{tag}$

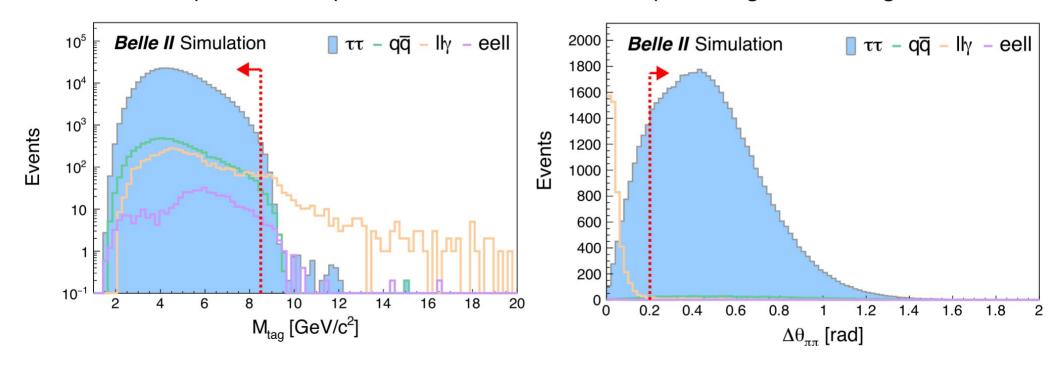
	Probe pion track	Tag pion track	Tag electron track	Tag muon track
$p_T [\mathrm{MeV}]$	_	> 200	> 200	> 200
$ z_0 $ [cm]	< 3	< 3	< 3	< 3
$ d_0 $ [cm]	< 1	< 1	< 1	< 1
$rac{E_{ m cluster}}{p}$	< 0.8	< 0.6	(0.8, 1.2)	< 0.6
$E_{ m cluster}$	_	> 0	_	> 0
muonID	_	< 0.9	_	> 0.9

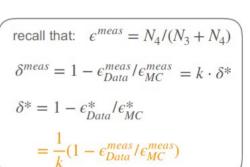
TABLE III: Track selection criteria. The first three lines in the table are the selections which define the *good tracks* used for this analysis.


	$N_{ m pion}^{ m probe}$	$N_{ m pion}^{ m tag}$	$N_{ m electron}^{ m tag}$	$N_{ m muon}^{ m tag}$
electron channel, 4-track sample	3	≥ 2	1	0
electron channel, 3-track sample	2	2	1	0
muon channel, 4-track sample	3	≥ 2	0	1
muon channel, 3-track sample	2	2	0	1

Trigger selection

- Different hardware (Level 1, L1) trigger lines based on ECL cluster properties are used to select events according to the channel:
 - Electron channel: energy deposit in ECL >1 GeV + Bhabha veto
 - $^{\rm -}$ Muon channel: low multiplicity trigger with minimum 3 ECL clusters, at least one above 300 MeV + Bhabha veto
- Reference L1 trigger line to measure the ECL trigger efficiency: CDC trigger lines


For details on trigger efficiency measurement: P. Rados's talk.


Selections

Selection optimization is performed on simulated MC samples for signal and background

Calibration procedure: details

- The discrepancy estimator $\boldsymbol{\delta}^{\text{meas}}$ is overestimated due to 1) combinatorial effect +
 - 2) effect of the applied selections
 - 1) allow multiple N4 candidates when the *probe track* passes also the selections for *tight pions* (tag track):
 - possible swapping of tracks between tag and probe
 - do not select any best candidate not to bias the efficiency
 - average on all the possible combinations with 1/Ncand as event weight
- From a pure statistical approach the expected overestimate k-factor is 2, averaging on the sign of the probe track.
 - 2) The selections for background rejection may mitigate the effect, rejecting some N4 candidates:
 - no more possible to extract the k-factor from pure theoretical approach (binomial coefficient computation) \rightarrow need a *calibration procedure exploiting the simulation*

Efficiency estimator: statistical interpretation

• The tag-and-probe method exploits charge conservation to imply the 4th track:

FOUND
$$\rightarrow$$
 N4 NOT FOUND \rightarrow N3
$$\epsilon \times A = N4/(N3+N4)$$

- Let's call ${f \epsilon}$ the efficiency to find a track and assume we always have the 1-prong track (required by reconstruction, ${f \epsilon}_{\text{1-prong}}=1$)
- N4 = $\epsilon^3 N_{tot} (\epsilon_{1-prong} * \Pi \mathcal{B})$
- N3 = 3 ϵ^2 (1- ϵ) N_{tot} ($\epsilon_{1-prong}^* \Pi \mathcal{B}$)

$$\mathbf{\epsilon} \times \mathbf{A} = \mathbf{N4/(N3+N4)} = \frac{\epsilon^3}{\epsilon^3 + 2\epsilon^2(1-\epsilon)} = \frac{\epsilon}{2-\epsilon} = \frac{1-\delta}{1+\delta} \simeq 1 - 2\delta + o(\delta^2)$$