

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

B lifetime at Belle II

[arxiv: 2005.07507]

Cyrille Praz, on behalf of the Belle II collaboration

ICHEP 2020 | PRAGUE

B lifetime at Belle II

Outline

Introduction

2 Measurement strategy

3 Fit strategy

4 Systematic studies

5 Results

Introduction

SuperKEKB

- e^+e^- collider.
- $\sqrt{s} = 10.6 \,\text{GeV} = m(\Upsilon(4S))c^2$.
- BR $(\Upsilon(4S) \rightarrow B\overline{B}) > 96\%$.

The Belle II detector

- Pixel detector (PXD).
- Silicon Vertex Detector (SVD).
- Central Drift Chamber (CDC).
- Calorimeter (ECL).
- Aerogel Ring-Imaging Cherenkov (ARICH).
- Time-Of-Propagation (TOP) counter.
- K_L^0 and μ detection (KLM).

Introduction

- B^0 lifetime measurement using <u>2019</u> Belle II data ($\mathcal{L} = 8.7 \pm 0.2 \, \text{fb}^{-1}$).
- Belle II has a smaller boost compared to Belle, but a better impact parameter resolution (factor $\sim 1.5 2$) thanks to the pixel detector.
 - $(\beta\gamma)_{\text{Belle II}} \approx 0.28 < 0.42 \approx (\beta\gamma)_{\text{Belle}}.$
 - A good vertex separation is crucial for time-dependent studies.
 - CP violation results will be presented by N. Rout [link].
 - The Belle II tracking allows for a measurement of the beamspot size:

Cyrille Praz

B^0 lifetime measurement strategy

- B⁰ hadronic decays fully reconstructed.
- Other B vertex from the remaining tracks in the event.

- B mesons nearly at rest in the $\Upsilon(4S)$ frame.
 - Flight distance in the transverse plan neglected.

•
$$\Delta t \approx \frac{\Delta z_{\text{boost}}}{c(\beta\gamma)_{\Upsilon(4S)}}, \quad \Delta z_{\text{boost}} = \mathcal{O}(100\,\mu\text{m}).$$

$$p_{\text{na\"ive}}(\Delta t, \tau_B) = \int_0^\infty \mathrm{d}t_1 \int_0^\infty \mathrm{d}t_2 \, \frac{1}{\tau_B^2} \, \mathrm{e}^{\frac{-(t_1+t_2)}{\tau_B}} \, \delta(t_2 - t_1 - \Delta t) = \frac{1}{2\tau_B} \, \mathrm{e}^{-\frac{|\Delta t|}{\tau_B}} \, .$$

Cyrille Praz

30.07.2020 6 / 15

Reconstruction of the signal B^0

• Hadronic final states used to reconstruct B^0 decays.

Decay	ay Selection Criteria						
B ⁰ decays							
$B^0 ightarrow D^- \pi^+$							
$B^0 ightarrow D^- ho^+$	$M \rightarrow 5.2 \text{ CoV}/c^2$ and $0.2 < \Delta E < 0.2 \text{ CoV}$						
$B^0 ightarrow D^{*-} \pi^+$	$M_{\rm bc} > 5.2 \ {\rm GeV}/c$ and $-0.2 < \Delta L < 0.2 \ {\rm GeV}$						
$B^0 ightarrow D^{*-} ho^+$							
D decays							
$D^{*+} ightarrow D^0 \pi^-$	$0.143 < m_{D^{*+}} - m_{D^0} < 0.147 ~{ m GeV}/c^2$						
$D^- ightarrow K^+ \pi^- \pi^-$	$ m - m_{PDG} < 0.015 { m GeV}/c^2$						
$D^0 ightarrow K^- \pi^+$							
$D^0 o K^- \pi^+ \pi^0$	$ m - m_{PDG} < 0.015 { m GeV}/c^2$						
$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$							
ho decay							
$\rho^+ \to \pi^+ \pi^0$	$ m - m_{PDG} < 0.10 { m GeV}/c^2$						

•
$$M_{
m bc} \equiv \sqrt{E_{
m Beam}^{*2} - \rho_{B^0}^{*2}}$$
 ; $\Delta E \equiv E_{B^0}^* - E_{
m Beam}^*$.

Model for the total probability density

 $p_{\rm all}(\Delta t) \equiv n_{\rm sig} p_{\rm sig}(\Delta t, \tau_{B^0}) + n_{\rm b\bar{b}} p_{\rm b\bar{b}}(\Delta t, \tau_{\rm eff}) + n_{\rm cont} p_{\rm cont}(\Delta t).$

- Contributions:
 - Basic Δt density $\rightarrow p_{\text{na\"ive}}(\Delta t, \tau_B) = rac{1}{2\tau_B} \, \mathrm{e}^{-rac{|\Delta t|}{\tau_B}}$.
 - Resolution density $\rightarrow \mathcal{R}(\delta_{\Delta t}) = \text{sum of 3 Gaussian densities.}$
 - Signal density $\rightarrow p_{sig}(\Delta t, \tau_{B^0}) = (p_{naïve}(\cdot, \tau_{B^0}) * \mathcal{R})(\Delta t).$
 - *B* background density $\rightarrow p_{b\overline{b}}(\Delta t, \tau_{eff}) = (p_{naïve}(\cdot, \tau_{eff}) * \mathcal{R})(\Delta t).$
 - Continuum density $ightarrow p_{
 m cont}(\Delta t) =$ sum of 3 Gaussian densities.

Extraction of yields

• 2D extended maximum likelihood fit to the unbinned $M_{
m bc}$ and ΔE .

• Extraction of n_{sig} , $n_{b\overline{b}}$ and n_{cont} .

[arxiv: 2005.07507]

Continuum shape

• Fit to Δt of the sideband in simulation (left) and data (right).

- Extraction of the continuum shape parameters.
- $\{f_{1,2,3}, s_{2,3}, \Delta \mu\}$ from simulation, $\{\mu_1, \sigma_1\}$ from data.

 $p_{\text{cont}}(\Delta t) = f_1 \mathcal{G}(\Delta t; \mu_1, \sigma_1) + f_2 \mathcal{G}(\Delta t; \mu_1 + \Delta \mu, s_2 \times \sigma_1) + (1 - f_1 - f_2) \mathcal{G}(\Delta t; \mu_1, s_2 \times s_3 \times \sigma_1)$ (1)

[arxiv: 2005.07507]

Resolution function shape

- Fit to Δt residual for the signal contribution of the simulated sample.
 - Extraction of the resolution parameters.

[arxiv: 2005.07507]

• After this step, $\tau_{\rm eff}$ can be fixed from $b\overline{b}$ simulated events.

Cyrille Praz

Systematic studies

- Systematic uncertainty sources considered:
 - Fit parametrisation.
 - Reproduce fit on 10k simulated bootstrap samples $ightarrow \sigma = 0.05\,\mathrm{ps}.$
 - Check what happens when $au_{\rm eff}$ is left free $o \sigma = 0.01\,{\rm ps}.$
 - Calibration and alignment constants in data.
 - Reproduce study on a data subsample with different constants $ightarrow \sigma = 0.03 \, {\rm ps.}$

Results

Final result

- Fit to Δt for all $B^0 \to D^{(*)}h$ of the selected decay candidates.
 - 3 free parameters: τ_{B^0} , $\mu_{1, \mathrm{resolution}}$ and $\sigma_{1, \mathrm{resolution}}$.
 - $\tau_{B^0} = 1.48 \pm 0.28 \text{ (stat)} \pm 0.06 \text{ (syst)} \text{ ps.}$
 - Reduced $\chi^2 = 0.83$.

[arxiv: 2005.07507]

Conclusion

- B^0 lifetime was measured using 2019 Belle II data ($\mathcal{L} = 8.7 \pm 0.2 \, \mathrm{fb}^{-1}$).
 - $\tau_{B^0} = 1.48 \pm 0.28 \text{ (stat)} \pm 0.06 \text{ (syst)} \text{ ps.}$
 - Good agreement with world average ($au_{B^0} = 1.519 \pm 0.004 \, \mathrm{ps}$).
 - Assess the accuracy of vertex fitting tools, time resolution modeling and detector alignment.
 - Conference note available online: [arxiv: 2005.07507].
- See also D^0 lifetime study in G. Casarosa's talk [link].
 - Larger data sample, time resolution $\times 2$ better than Belle and BaBar.

Questions

Questions

Thank you for your attention.

Details on fit parameters

- Fit 1: $M_{\rm bc}$ and ΔE .
- Fit 2: Δt of the sideband events.
- Fit 3: Δt residual.
- Final fit: Δt of the signal region.

 $\mathcal{R}(\delta_{\Delta t}) = f_1 \mathcal{G}(\delta_{\Delta t}; \mu_1, \sigma_1) + f_2 \mathcal{G}(\delta_{\Delta t}; \mu_1 + \Delta \mu, s_2 \times \sigma_1) + (1 - f_1 - f_2) \mathcal{G}(\delta_{\Delta t}; \mu_1, s_2 \times s_3 \times \sigma_1)$ (2)

			-	Fit parameter	value
	Fit parameter	value		$\Delta \mu_{cont}$ [GeV/ c^2]	-0.0846 ± 0.026
Fit 1	n _{sgn} fit region	$\begin{array}{c} (1.22\pm0.04)\times10^{3}\\ (1.29\pm0.07)\times10^{3}\\ (1.14\pm0.06)\times10^{3} \end{array}$		ficent	0.468 ± 0.021
	n _{bb} fit region		Fit 2	fcont	0.357 ± 0.017
	n _{cont} in region			\$2 cont	2.88 ± 0.096
	nem signal region	$(1.10 \pm 0.04) \times 10^3$		s _{3cont}	3.02 ± 0.11
	$n_{b\overline{b}}$ signal region	270 ± 32		$\Delta \mu_{res} [\text{GeV}/c^2]$	-0.360 ± 0.031
	n _{cont} signal region	140 ± 21	Fit 3	fires	0.561 ± 0.016
Fit 2	μ_{1cont} [ps]	0.021 ± 0.021		forme	0.336 ± 0.014
	σ_{1cont} [ps]	0.429 ± 0.015		·2/c3	2.84 ± 0.079
Final fit	μ_{1res} [ps]	-0.03 ± 0.06		52res	2.04 ± 0.013
	σ_{1res} [ps]	0.56 ± 0.18		53res	2.99 ± 0.13
	τ_{B^0} [ps]	1.48 ± 0.28		—	
-			-	$\tau_{\rm eff}$ ps	1.31 ± 0.03