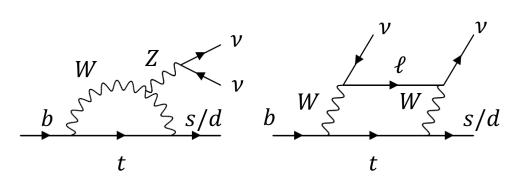
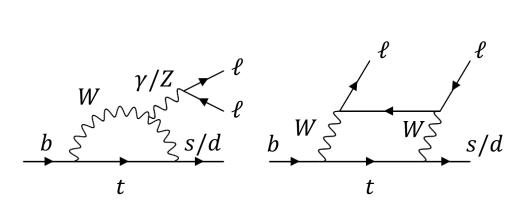
Results and Prospects of Radiative and Electroweak Penguin Decays at Belle II

Yo Sato on behalf of Belle II collaboration

Tohoku University

ICHEP 2020, July 30th

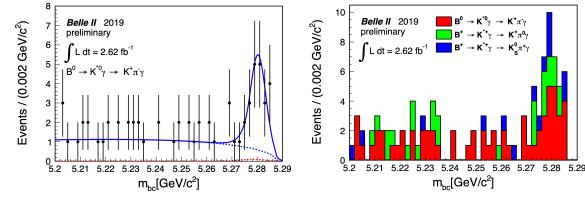




Introduction

ICHEP 2020, July 30th

- Flavour-changing neutral current (FCNC) b → s and b → d processes continue to be a great probe for new physics beyond the standard model.
- Radiative and electroweak (EW) penguin decays are theoretically and experimentally clean because the final states include color single particle(s), γ, ℓ⁺ℓ⁻, νν̄.
- The anomalies in $B \to K^{(*)}\ell^+\ell^-$ decays motivate further studies on this field. [LHCb : <u>1</u>, <u>2</u>, <u>3</u>] [Belle : <u>4</u>]



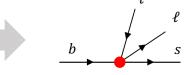
Radiative and EW Penguin decays at Belle II

Belle II program on the channels includes

- Time dependent CP violation in radiative decays.
 - New physics can induce much larger decay rate of $b_L \rightarrow s_R \gamma_R$ which introduce large mixed-induced CP violation.
 - Rediscovery of $B \rightarrow K^* \gamma$ at Belle II. Update with new dataset is in progress.
- Measurements on inclusive $B \to X_s \ell^+ \ell^-$ decays to shed further light on the anomalies of exclusive $B \to K^{(*)} \ell^+ \ell^-$.
- Discovery of the channels involving neutrino like $B \rightarrow K^{(*)} \nu \bar{\nu}$.

BELLE2-NOTE-PL-2019-021

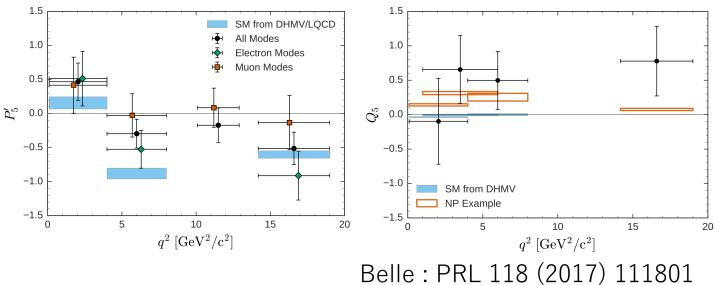
Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu})$	$<40\times10^{-6}$	25%	9%
${\cal B}(B o K^+ u \overline{ u})$	$<19\times10^{-6}$	30%	11%
$A_{CP}(B \to X_{s+d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1.5	0.5
$S(B o K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035
$S(B ightarrow ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 3.5 \ { m GeV}^2/c^4)$	26%	10%	3%
$Br(B \rightarrow K^+ \mu^+ \mu^-)/Br(B \rightarrow K^+ e^+ e^-)$	28%	11%	4%
$(1 < q^2 < 6 \ { m GeV}^2/c^4)$			
$Br(B \rightarrow K^{*+}(892)\mu^+\mu^-)/Br(B \rightarrow$	24%	9%	3%
$K^{*+}(892)e^+e^-) \ (1 < q^2 < 6 \ { m GeV}^2/c^4)$			
$\mathcal{B}(B_s o \gamma \gamma)$	$< 8.7 \times 10^{-6}$	23%	_
$\mathcal{B}(B_s o au au)$ [10 ⁻³]	_	< 0.8	_


The Belle II Physics Book, <u>PTEP 2019 (2019) 12</u> hereinafter referred to as B2TiP

$\overline{b} \rightarrow s\ell^+\ell^-$

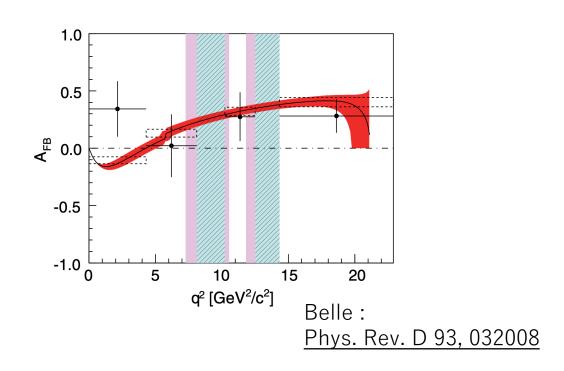
In the SM,

- $b \rightarrow s\ell^+\ell^-$: C_7 , C_9 , and C_{10} .
- $C_7 \sim -0.3, C_9 \sim 4, C_{10} \sim -4.$
- Lepton Flavor Universality (LFU), $C_e = C_u$.


$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i \mathcal{O}_i \qquad \qquad \mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu}P_R b) F^{\mu\nu}, \\ \mathcal{O}_{9\ell} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu}P_L b) (\bar{\ell}\gamma^{\mu}\ell), \\ \mathcal{O}_{10\ell} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu}P_L b) (\bar{\ell}\gamma^{\mu}\gamma_5\ell), \\ \frac{W}{\sqrt{2}} \int_{t}^{t} \int_{t}^{\ell} \int_{t}$$

e

Anomalies in exclusive $B \to K^{(*)}\ell^+\ell^-$ imply smaller C_9 , especially for $C_{9\mu}$.

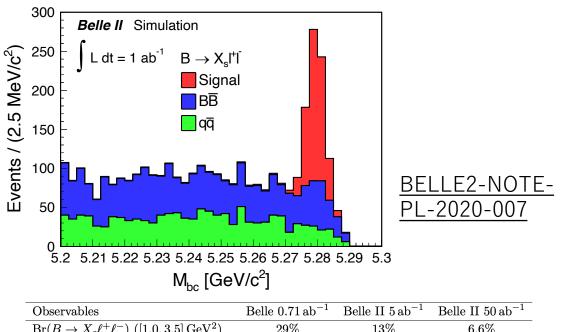

- Angular observable P'_5 in $B \to K^* \ell^+ \ell^-$.
 - $Q_5 = P_5^{\prime \mu} P_5^{\prime e}$.
- LFU violation, R_K , R_{K^*} . •

ICHEP 2020, July 30th

Inclusive $B \to X_s \ell^+ \ell^-$

- Hadronic uncertainties are under better control than exclusive $b \rightarrow s\ell^+\ell^-$.
- Sum-of-exclusive method : Reconstruct as many final states as possible.
- Experimentally challenging due to large backgrounds.
 - All observables are highly statistics limited.

Belle II is the unique experiment to perform an analysis of $B \to X_s \ell^+ \ell^-$ with large statistics.

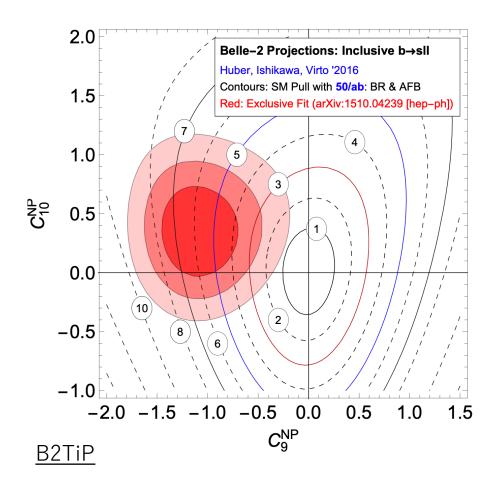

$B \to X_s \ell^+ \ell^-$ in Belle II

$\hfill\square$ Sum-of-exclusive method

- X_s is reconstructed from
 - $Kn\pi$ $(n \le 4)$ and 3K.
 - at most one K_S^0 , π^0 .
 - $M_{X_s} < 2.0 \text{ GeV/c}^2$.
- Background

ICHEP 2020, July 30th

- Dominated by $B(\rightarrow X\ell\nu)\overline{B}(\rightarrow X\ell\nu)$.
- Mis-identified $B \rightarrow Km\pi$ has to be understood.
- Sensitivity of BF and A_{FB} is a few % level in 50 ab⁻¹.



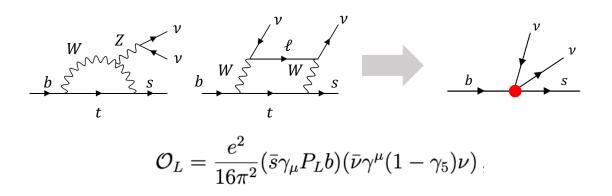
Observables	Belle $0.71 \mathrm{ab^{-1}}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${ m Br}(B o X_s \ell^+ \ell^-) \; ([1.0, 3.5] { m GeV}^2)$	29%	13%	6.6%
${ m Br}(B o X_s \ell^+ \ell^-) \; ([3.5, 6.0] { m GeV}^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%
$A_{\rm FB}(B o X_s \ell^+ \ell^-) \; ([1.0, 3.5] { m GeV}^2)$	26%	9.7%	3.1%
$A_{\rm FB}(B o X_s \ell^+ \ell^-) \; ([3.5, 6.0] { m GeV}^2)$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ { m GeV^2})$	19%	7.3%	2.4%

■ Fully inclusive method will be explored with dedicated simulation studies.

B2TiP

Interplay of inclusive and exclusive $b \rightarrow s\ell^+\ell^-$

An analysis of inclusive $B \to X_s \ell^+ \ell^-$ with 50 ab⁻¹ will exclude the SM by 5σ if the true values of C_9 and C_{10} are at the current best-fit.


- Hadronic uncertainties in the inclusive and exclusive decays are independent. Complementary information can be provided.
- Full angular analysis, not only A_{FB} , can be performed with large statistics.

$b \rightarrow s \nu \bar{\nu}$

- Theoretically cleaner than $b \rightarrow s\ell^+\ell^-$ due to the absence of photon mediated contribution.
 - In the SM, only O_L is relevant.
- Experimentally, the decay has never been observed.
 - Two neutrinos cannot be detected.

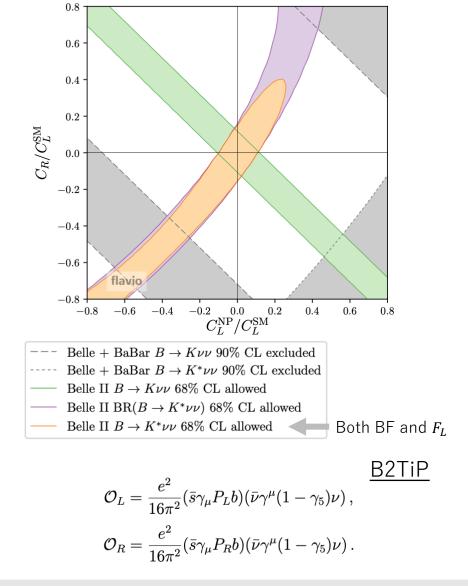
Mode	Upper limit
$B^+ \to K^+ \nu \bar{\nu}$	$< 5.5 \times 10^{-5}$
$B^0 o K^0_s u ar{ u}$	$<9.7\times10^{-5}$
$B^+ \to K^{*+} \nu \bar{\nu}$	$<4.0\times10^{-5}$
$B^0 o K^{*0} \nu \bar{\nu}$	$< 5.5 \times 10^{-5}$

Belle : <u>Phys. Rev. D87 (2013)</u> <u>111103</u>

$$BR(B^+ \to K^+ \nu \bar{\nu})_{SM} = (3.98 \pm 0.43 \pm 0.19) \times 10^{-6},$$

$$BR(B^0 \to K^{*0} \nu \bar{\nu})_{SM} = (9.19 \pm 0.86 \pm 0.50) \times 10^{-6},$$

$$F_L^{SM} = 0.47 \pm 0.03,$$

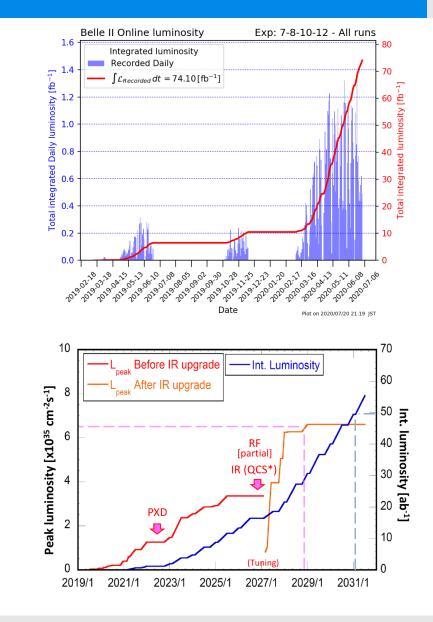

Buras, Girrbach-Noe, Niehoff and Straub, JHEP 02 184 (2015)

$B \to K^{(*)} \nu \bar{\nu}$ in Belle II

Belle II can observe the $B \rightarrow K^{(*)}\nu\overline{\nu}$ at early stage (several ab⁻¹).

- Hadronic and Semi-leptonic tagging with FEI [<u>T. Keck et al. Comput. Softw. Big. Sci. (2019)3: 6</u>].
- Sensitivity on the BF is 10% level with 50 ab⁻¹.
- The longitudinal polarization fraction $F_L(K^*)$ can be measured with 20% precision.
- Combining measurements of $B \to K \nu \bar{\nu}$ and $K^* \nu \bar{\nu}$ will exclude a large portion of the allowed parameter space.

New analysis method with current data in progress for publication.

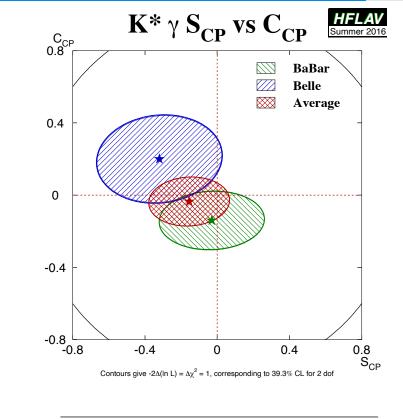

Conclusion

Belle II collected 74.10 fb⁻¹ integrated luminosity

- ~ 10 times more in this summer than last year.
- Measurements in various processes have been started.
 - Rediscovery of $B \to K^* \gamma$.
- First results in $b \to s\ell^+\ell^-$ and $b \to s\nu\bar{\nu}$ in progress.

Goal : $L = 50 \text{ ab}^{-1} \text{ by } \sim 2030$

- Confirm or exclude the anomalies with $B \rightarrow X_s \ell^+ \ell^-$.
- Discover $B \to K^{(*)} \nu \bar{\nu}$ at early stage and precise measurements will be performed.



Time dependent CP violation in $b \rightarrow s(d)\gamma$

- $b_L \rightarrow s_R \gamma_R$ is helicity suppressed (m_s/m_b) compared to $b_R \rightarrow s_L \gamma_L$.
- Interference between $B \to f_{CP}\gamma_R$ and $B \to \overline{B} \to f_{CP}\gamma_R$ arises from only the helicity suppressed $b_L \to s_R\gamma_R$ decay.
- SM : $S_{K_S^0 \pi^0 \gamma}^{SM} \sim -s \frac{m_s}{m_b} \sin 2\phi_1 = -(2.3 \pm 1.6)\%.$
- Current world average : $S_{K_S^0 \pi^0 \gamma}^{\exp} = -0.16 \pm 0.22.$
- New physics can enhance the $b_L \rightarrow s_R \gamma_R$ decay rate.

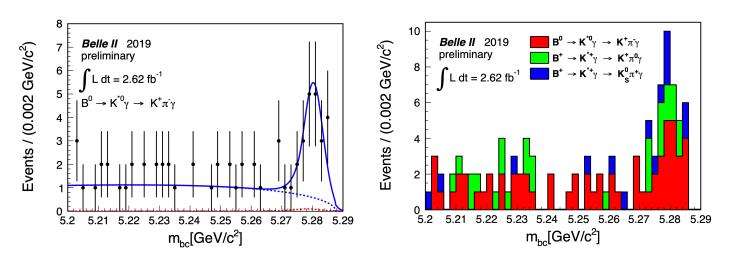
Experimentally,

- $B \rightarrow K^* \gamma$ has the largest BF. At several ab-1, tension from SM will be observed if the true values are at world average.
- $B \rightarrow \rho \gamma$ will be explored with high statistics.

Int. Lum. ab^{-1}	$\operatorname{Stat}(S)$	$\operatorname{Stat}(A)$
2	0.15	0.10
10	0.07	0.05
50	0.031	0.021

Sensitivity on *S* and A(C) for $B \rightarrow K^*\gamma$ at Belle II, <u>B2TiP</u>

Yo Sato (Tohoku University)


ICHEP 2020, July 30th

Results of $B \to K^* \gamma$ at Belle II

Search for $B \to K^* \gamma$ decay using three decay modes.

- Clear peak is observed in the beam-constrained mass $M_{bc} = \sqrt{E_{beam}^{*2} p_B^{*2}}$ distribution.
- Signal yields agree with world average branching fraction.
- Combined significance exceeds 5σ .

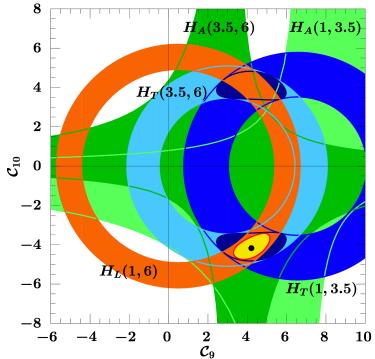
Rediscovery of radiative penguin decay at Belle II.

	Signal yield (stat. error)	Significance
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	19.2 ± 5.2	4.4σ
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	9.8 ± 3.4	3.7σ
$B^+ \to K^{*+} \big[K^0_S \pi^+ \big] \gamma$	6.6 <u>+</u> 3.1	2.1σ

BELLE2-NOTE-PL-2019-021

Full angular analysis of $B \to X_s \ell^+ \ell^-$

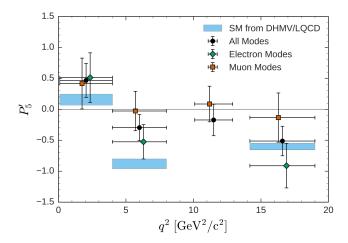
The double differential decay rate for $B \to X_s \ell^+ \ell^-$.


$$\frac{d^2\Gamma}{dq^2dz} = \frac{3}{8} \left[(1+z^2)H_T(q^2) + 2zH_A(q^2) + 2(1-z^2)H_L(q^2) \right].$$

 $q^2 = (p_{\ell^+} + p_{\ell^-})^2$, $z = \cos\theta$ (θ is the angle between ℓ^- and B in the di-lepton center-of-mass frame).

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = H_T(q^2) + H_L(q^2) \,,$$
$$\frac{\mathrm{d}A_{\mathrm{FB}}}{\mathrm{d}q^2} = \frac{3}{4}H_A(q^2) \,.$$

Helicity decomposition gives third observables. Third independent constraint can be set.

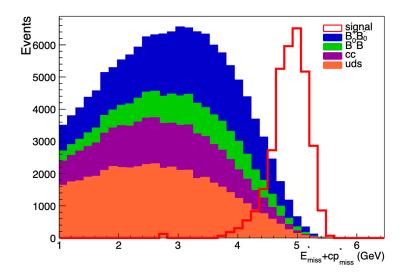

Lee, Ligeti Stewart and Tackmann, PRD 75, 034016 (2007)

Exclusive $B \to K^* \ell^+ \ell^-$ at Belle II

- The uncertainty on P'_5 in $q^2 \in [4,6]$ GeV² bin using both electron and muon modes at ~5 ab⁻¹ will be comparable to the 4.7 fb⁻¹ LHCb result that used the muon mode only.
- Precise measurement of $B \to K^* e^+ e^-$ in the low- q^2 and high- q^2 region at Belle II, provides important information to the anomaly in $B \to K^* \mu^+ \mu^-$.

Observables	$\rm Belle~0.71ab^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$P_5'~([1.0, 2.5]{ m GeV^2})$	0.47	0.17	0.054
$P_5'~([2.5, 4.0]{ m GeV^2})$	0.42	0.15	0.049
$P_5'~([4.0, 6.0]{ m GeV^2})$	0.34	0.12	0.040
$P_5' \ (> 14.2 {\rm GeV^2})$	0.23	0.088	0.027
			<u>B2TiP</u>
${ m d}^4\Gamma$	9 [3		1
$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\mathrm{d}\cos\theta_K\mathrm{d}\phi\mathrm{d}q^2} =$	$=\frac{1}{32\pi} \left \frac{1}{4} (1-F_{\rm L}) \sin^2 \right $	$^{2}\theta_{K} + F_{\rm L}\cos^{2}\theta_{K} +$	$\frac{1}{4}(1-F_{\rm L})\sin^2\theta_K$ co

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \\ - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right],$$


$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_\mathrm{L}(1-F_\mathrm{L})}}.$$

ICHEP 2020, July 30th

$B \to K^{(*)} \nu \bar{\nu}$

- By reconstructing the other B meson (tag-side) and using the initial state of e⁺e⁻, the missing energy and momentum can be used to distinguish signal from backgrounds.
- Tagging efficiency
 - Hadronic tag : O(0.1)%.
 - Semi-leptonic tag : O(1)%.

- Analysis with new tagging method gives comparable sensitivity with current data set.
 - Inclusive tag : Higher tagging efficiency.

Missing E + p in the CM frame for $B^0 \rightarrow K^{*0}[K^+\pi^-]\nu\bar{\nu}$. Backgrounds correspond to 1 ab⁻¹, while the signal normalization is arbitrary. <u>B2TiP</u>

[1] LHCb Collaboration, JHEP 08 (2017) 055

[2] LHCb Collaboration, Phys.Rev.Lett. 122 (2019) 19, 191801

[3] LHCb Collaboration, <u>Phys.Rev.Lett. 125 (2020) 1, 011802</u>

[4] Belle Collaboration, Phys.Rev.Lett. 118 (2017) 11, 111801