CKM and CPV: Experimental Overview

Doris Yangsoo Kim Soongsil University

August 5, 2020 ICHEP 2020 (Virtual Conference / Prague, Czech Republic)

Contents

• CKM

- Status of CKM angle γ
- V_{xv} from (semi)-leptonic decays
- CPV
 - CPV phase ϕ_s in B_s mixing
 - Time dependent analyses
- News from Belle II
- Summary

Disclaimer:

There is an enormous variety of interesting topics on CKM/CPV. Given the time constraint, only selected subjects are summarized.

Current Status of CKM Angles

$$\alpha = 84.9^{+5.1}_{-4.5}, \quad \beta = 22.2 \pm 0.7, \quad \gamma = 72.1^{+4.1}_{-4.5} \text{ deg}$$

- The measurement on γ has been improved nicely with LHCb data. However,
 - Direct measurement at tree level: $\gamma = 72.1^{+4.1}_{-4.5}$ deg
 - Indirect calculation at loop level: $\gamma = 65.66^{+0.9}_{-2.65}$ deg (CKMFitter 2019 summer)
 - There is a 2 σ tension between the values, which could be an indication for New Physics.

The CKM Angle γ

$$\gamma = \phi_3 = \arg\left(\frac{-V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

- γ can be measured with a very small theoretical error.
 - Calculable at the tree level as an interference between "b to u" and "b to c".

 $\delta \gamma / \gamma \approx O(10^{-7})$ Brod & Zupan, JHEP01, 051 (2014).

- Experimentally, not so simple:
 - Uses hadronic B decay channels with small branching fractions; sizable LHCb data sets incredibly useful.
 - Modes involving neutrals need Belle (II) data.
 - Analyses need inputs from other beauty and charm experiments (CLEO-c, BES III)
 - Strategy: Measure γ from many D decay channels and combine them.

Testing $B \rightarrow Dh'$ with $D \rightarrow K_S^0 hh$, $h = K, \pi$

- LHCb is studying various $B \rightarrow Dh'$ combinations with full Run 1 and Run 2 data.
- An example: BPGGSZ (D to 3 body final states) analysis on $D \to K_S^0 \pi^+ \pi^-$ and $D \to K_S^0 K^+ K^-$.
 - B^+ and B^- yields are compared for each Dalitz mass bin of D, resulting in asymmetry.

Preliminary LHCb $\gamma = (69 \pm 5) \text{ deg}$ with uncertainty ~ 5(stat) ~1(sys) ~1(ext) deg

- CPV is observed clearly in $B \rightarrow DK$.
- This preliminary result is the most precise single measurement on γ.
 (Talk Malde, July 30th)
- The last uncertainty is from δ_{D} (next slide)

Previous LHCb: $\gamma = (80^{+10}_{-9}) \text{ deg}$ with uncertainy ~9(stat) ~3(sys) ~4(ext) deg

Measurement of Strong Phase δ_D

- Charm factories (CLEO-c, BES III) running at ψ (3770) create C- odd $D\overline{D}$ pairs (Quantum correlation).
 - If tag side \overline{D} is CP odd, then signal side D is CP even. And vice versa.
- BES III conducted Dalitz analysis of $D \to K^0_{S,L}\pi^+\pi^-$ and measured δ_D . Phys. Rev. Lett. 124, 241802 (2020), Phys. Rev. D 101, 112002 (2020).
 - The associated uncertainty on γ is reduced from ~3 to ~1 deg. (Talk Lin, July 28th)

Doris Kim @ ICHEP 2020, August 5, 2020

Expected values by PRD 98,110212(2018) 7

(Semi)-Leptonic Decays

- Semi-leptonic decay rates are described as $\frac{d\Gamma(B \to h_x lv)}{dq^2 d\Omega} \propto |V_{xb}|^2 \times FF_{B \to h_x}(q^2, \Omega)$
- The measurement of h_x final states gives additional kinematic information, such as angles.
- Form factors, which represent hadronic interactions, need inputs from LQCD, light cone, etc.

Historically, V_{xb} measurements using exclusive and inclusive approaches did not agree very well, leading to speculations regarding new physics from e.g. righthanded currents.

V_{ub}: Inclusive Measurement

- Cabibbo favored $B \rightarrow X_c l \nu$ is a major background to CKM suppressed $B \rightarrow X_u l \nu$.
- Lepton energy endpoint and/or low M_x regions give clear info on $B \rightarrow X_u l v$.
- The new Belle analysis used neural network for hadronic tagging of the other B. Machine learning (BDT) is used to suppress backgrounds such as X_clv.

V_{cb}: **Exclusive Measurement**

- $B \rightarrow D^{(*)} l \nu$ is studied extensively to obtain exclusive V_{cb}.
- Fit variable ω + Full angular analysis strategy is used.

$$\omega = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}, \quad z = \frac{\sqrt{\omega + 1} - \sqrt{2}}{\sqrt{\omega + 1} + \sqrt{2}}$$

• Note that uncertainty in form factors and *F*(1) should be considered.

	V _{cb} BGL fit (10 ^{–3})	V _{cb} CLN fit (10 ⁻³)	Reference
Belle (B ⁰)	$38.3 \pm 0.2 \pm 0.7 \pm 0.6$ (ext)	$38.4 \pm 0.2 \pm 0.6 \pm 0.6$ (ext)	Phys. Rev. D 100, 052007 (2019)
BABAR (B ⁰)	38.36 ± 0.90	38.40 ± 0.84	Phys. Rev. Lett. 123, 091801 (2019) (Talk Simonetto, July 29 th)
LHCb (B _s)	$42.3 \pm 0.8 \pm 0.9 \pm 1.2$ (ext)	$41.4 \pm 0.6 \pm 0.9 \pm 1.2$ (ext)	Phys. Rev. D 101, 072004 (2020) (Talk Ferrari, July 29 th)
PDG2020	39.5 ± 0.9		Mannel and Urquijo, PDG 2020

Doris Kim @ ICHEP 2020, August 5, 2020 FF by 1) Boyd Grinstein Lebed, 2) Caprini Lellouch Neubert.

tan θ_{C} and Isospin: Old Issue but New Result

• BES III measured DCS BF $D^+ \rightarrow K^+ \pi^- \pi^0$ by reconstructing double tag events. arXiv:2007.07674. This world first measurement provides the ratio of DCS/CF BRs, which is related to tan θ_c as,

$$\frac{B(D \to K^+ \pi^+ \pi^- \pi^0)}{B(D \to K^- \pi^+ \pi^- \pi^0)} = (1.81 \pm 0.15)\% = (6.28 \pm 0.52) \tan^4 \theta_C$$

- This value is much larger compared to the other DCS/CF ratios. There may be a large isospin violation between $D^+ \to K^+ \pi^- \pi^0$ and $D^0 \to K^+ \pi^- \pi^- \pi^+$.
- There was no clear evidence of CPV in the charge asymmetry measurement.

CPV

CPV phase ϕ_s in B_s mixing

- ϕ_s is a CPV phase, which is a weak phase difference between the B_s \overline{B}_s mixing and the direct decay of B_s into a common final state.
- The golden mixing decay $B_s \rightarrow J/\psi \phi$, $(\phi \rightarrow K^+K^-)$ is well known, less complicated environment to measure the phase. (No direct CPV. Only one weak phase.)
- At the tree level, SM predicts

$$\phi_s \approx -2\beta_s = -2\arg\left(\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

• At LHC experiments, the flavor of *B_s* is determined by Opposite Side Tagging (muon, electron, jet-charge) or Same Side Tagging (Kaon, LHCb only).

Measurements of ϕ_s and $\Delta\Gamma_s$ at LHC

Doris Kim @ ICHEP 2020, August 5, 2020

Note*: LHCb Numbers from Eur. Phys. J. C 79, 706 (2019)

Time Dependent CPV in $B \rightarrow D^{*\pm}D^{\mp}$

- In the $B \to D^{*\pm}D^{\mp}$ decays, in addition to the CKM angle 2 β , New Physics contributions may appear.
 - Recent LHCb results, JHEP 03, 147 (2020), are comparable to the previous Belle/Babar numbers, and are the most precise up to date.
 - Used modes are $D^{*+} \rightarrow D^0 \pi^+ (D^0 \rightarrow K^- \pi^+ \pi^-, D^0 \rightarrow K^- \pi^+)$ and $D^- \rightarrow K^+ \pi^- \pi^-$.

Update of Charm mixing/CPV: ICHEP 2020

• HFLAV updated the charm sector as https://hflav.web.cern.ch/content/charm-physics

LHCb $D^0 \to K^+K^-$, $D^0 \to \pi^+\pi^-$ Phys. Rev. D 101, 012005 (2020) (Talk Tuci, July 30th)

Doris Kim @ ICHEP 2020, Belle $D^+ \rightarrow K_S^0 \omega$ arXiv:1912.10912 (Talk Li, July 28th) August 5, 2020

NEWS FROM BELLE II

Belle II Luminosity: Proposed Plan and Status

19/10

19/11

19/12

• $\beta_y^* \sim 0.5$ mm before 2026. 0.3 mm after 2026.

Doris Kim @ ICHEP 2020, August 5, 2020

20/7

20/6

20/4

20/5

20/3

Time Dependent CPV and Mixing

- The golden channel $B^0 \rightarrow J/\psi(ll)K_S^0(\pi^+\pi^-)$ is studied and the time dependent CPV parameter sin $2\phi_1$ is extracted.
- CPV is assumed only from the B^0 mixing (A_{CP} = 0).
 - The wrong sign tag ratio $w = (20.9 \pm 2.1)\%$ is obtained from the $B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+$ sample where $\Delta m_d = (0.531 \pm 0.046 \pm 0.013) \text{ ps}^{-1}$.

Doris Kim @ ICHEP 2020, August 5, 2020 (Talk Rout, July 30th)

Toward V_{cb} and V_{ub}: **Semi-Leptonic Decays**

(Talk Cheaib, July 29th & poster Granderath, July 29th)

Doris Kim @ ICHEP 2020, August 5, 2020 FEI: Full event interpretation algorithm for hadronic tagging (Talk Sutcliffe, July 30th) BGL: Grinstein et al

Belle II preliminary

 $\overline{B}{}^{0} \rightarrow D^{*+} \mu^{-} \overline{\nu}_{\mu}$

Summary

- Measurement on γ slowly enters the precision area.
 - Inputs from charm/beauty experiments are needed.
- The CKM elements are being updated relentlessly.
 - (semi)-leptonic decay modes are leading the efforts.
- Belle II started generating comparable physics results.
- The CKM/CPV is a great handle to look for new physics.

EXTRA

nEDM: neutron Electric Dipole Moment

$H = -\vec{\mu} \cdot B - d \cdot E \implies$ Larmor precession	
Energy $\int -\vec{\mu} \cdot \vec{B} + HV - \Delta E = 4$	1 <i>dE</i>

(Ayres @ FPCP 2020)

- A new measurement at Paul Scherrer Institute (Phys. Rev. Lett. **124**, 081803)
- Classically, EDM represents an asymmetric charge distribution inside a particle.
- Non-zero EDM in neutron implies T violation. Under CPT conservation, it also means CPV.
- Ramsey's method was used to extract frequency of ultracold neutrons in B and E fields.

 $d_n = (0.0 \pm 1.1 \pm 0.2) \times 10^{-26} e.\text{cm}$

 $\Rightarrow |d_n| < 1.8 \times 10^{-26} e.cm (90\% C.L.)$

• Previously, Phys. Rev. **29**, 092003 (2015) $d_n = (-0.2 \pm 1.5 \pm 1.0) \times 10^{-26} e.cm$ $\Rightarrow |d_n| < 3 \times 10^{-26} e.cm (90\% \text{ C.L.})$

Final D Category for Measurement of γ

- GLW: CP eigenstate D decays
 - $D \rightarrow KK$, $D \rightarrow \pi\pi$. Phys. Lett. B 253, 483 (1991), Phys. Lett. B 265, 172 (1991)
- ADS: CF or DCS D decays
 - $D \rightarrow K\pi$. Phys. Rev. Lett. 78, 3257 (1997), Phys. Rev. D63, 036005 (2001)
- BPGGSZ: D to 3 body final states
 - $D \rightarrow K_S^0 \pi \pi$. Phys. Rev. D68, 054018 (2003)
- TD (time dependent): Interference between mixing and decay
- Dalitz: 3-body B decays with a neutral D
 - $B \to \overline{D}{}^0 K \pi$. Phys. Rev. D79, 051301 (2009)

Prog. Theor. Exp. Phys. 2020 083C01 (2020)

Other (Semi)-Leptonic Decays

Observation of $D^+ \rightarrow \tau^+ \nu_{\tau}$ by BES III.

First measurement of BF $D^+ \rightarrow \eta \mu^+ \nu_{\mu}$ by BES III. Phys. Rev. Lett. **124**, 231801

- Note that the signal is represented by yellow curves.
- With LQCD inputs on f_{D+} (ETM 2015, Fermilab + MILC 2018),
 - $|V_{cd}| = 0.237 \pm 0.024 \pm 0.012 \pm 0.001$ (theory)

- Fit to $f_+^{\eta}(0)|V_{cd}| = 0.087 \pm 0.008 \pm 0.002$.
- Ivanov et al. (2019) review on $f_{+}^{\eta}(0)$ gives $|V_{cd}| = 0.242 \pm 0.022 \pm 0.006 \pm 0.033$ (theory)
- Note) PDG 2020 $|V_{cd}| = 0.221 \pm 0.004$