

Belle II RAW data management: The Online-Offline data transfer system

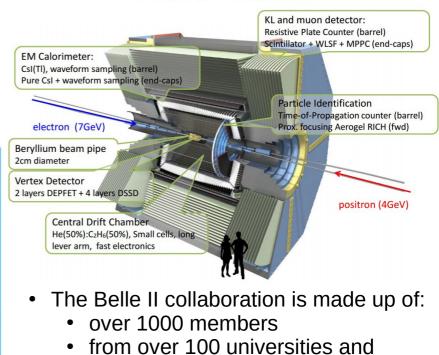
Matthew Barrett, Takanori Hara, Michel Hernández Villanueva^A, Kunxian Huang^B, Dhiraj Kalita, Petteri Kettunen, Prashant Shingade^c

KEK, University of Mississipi^A, National Taiwan University^B, Tata Institute of Fundamental Research^c 30th July 2020

ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

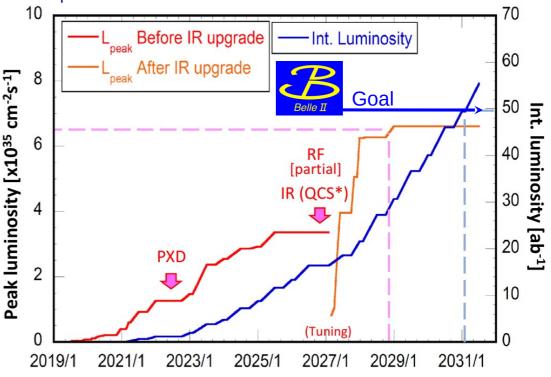
28 JULY - 6 AUGUST 2020 PRAGUE. CZECH REPUBLIC


Outline

- The Belle II experiment
- Belle II data flow
- Evolution of the data transfer system
- Data transfer operations and monitoring

The Belle II experiment

- Belle II is a particle physics experiment located at the KEK laboratory in Tsukuba, Japan.
 - The Belle II experiment is the successor to the Belle experiment (ran from 1999-2010).
 - Started first physics run in March 2019.

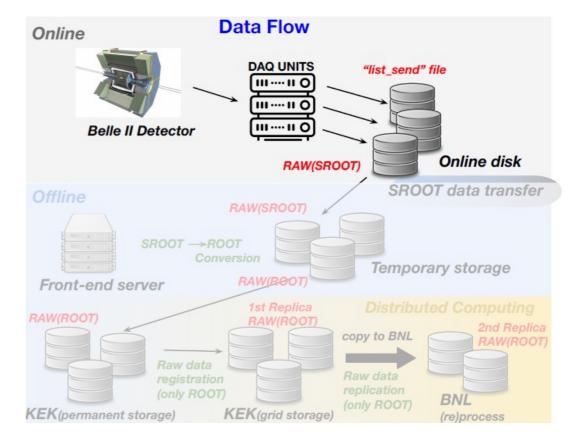

Belle II Detector

- research institutions
- in 26 countries.

Belle II Luminosity and Data Size

- The goal of Belle II is to collect a dataset of 50 ab⁻¹ (50 times that of Belle) to hopefully discover new physics.
 - 50 ab⁻¹ of raw data corresponds to approximately 60 PB.
- The rate at which the data are collected will increase over the data taking lifetime of the experiment.
- In later years the instantaneous luminosity be *O*(100) times what it was in 2019.
 - June 2020: Belle II set new world record instantaneous luminosity!

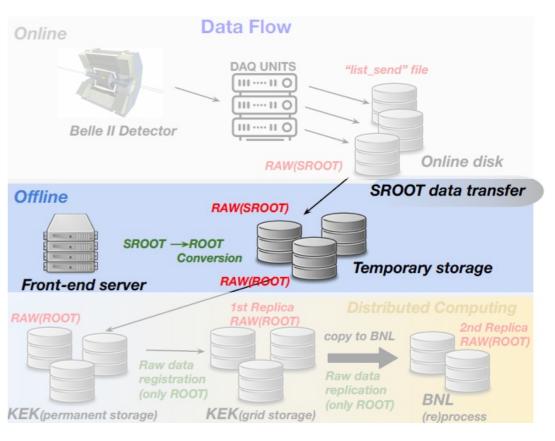
See talk by Kodai Matsuoka for overall Belle II status and prospects: https://indico.cern.ch/event/868940/contributions/3813745/


Belle II Raw Data Transfer System

Units used in this talk: $1 \text{ PB} = 2^{50}$ bytes, $1 \text{ TB} = 2^{40}$ bytes.

Belle II Data flow

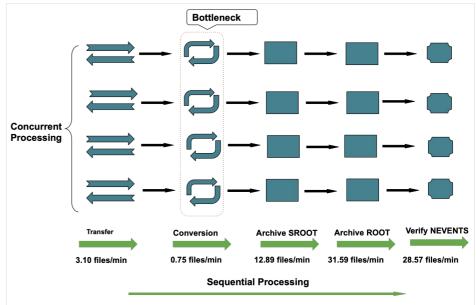
Online:


- Data are recorded by the Belle II Data Acquisition (DAQ) System,
 - stored on servers located close to the detector.
- Written in a format called SROOT (sequential ROOT)
 - allows for serialised writing of the data with no compression.

Belle II Data flow

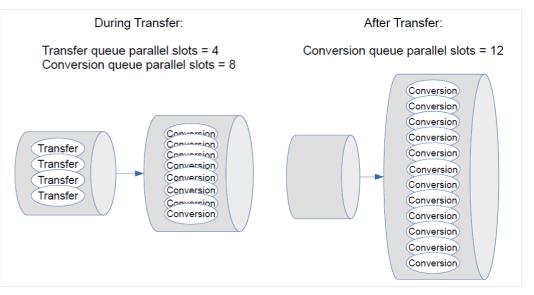
Offline:

- Data (SROOT) are transferred via a dedicated connection to the KEK Computing Research Center (KEKCRC) about 1.2 km from the detector.
 - SROOT files must be converted to standard ROOT [1] format, which is compressed, to be used for physics analysis.
 - Front-end (FE) servers at KEKCRC are used to convert the data into ROOT format.
- The raw data in ROOT format are copied to permanent storage;
- It is enforced that at least two copies of every file must exist.
 30 July 2020 Belle II 1


Data flow implementation – Early 2019

- Belle II first full physics run started in March 2019.
- A "list_send" file was created (typically once a day):
 - List of all SROOT files ready to be copied.
- The list_send file was copied to the FEs, then transfer of raw SROOT files to FEs was started.
 - SROOT files then converted to ROOT.
- After conversion the SROOT and ROOT files are archived.
 - Verification that #events in the SROOT files matches that in the ROOT files.

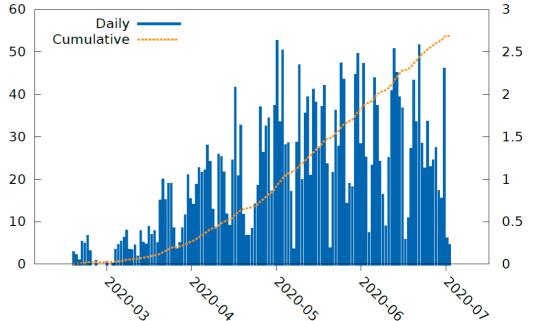
Data flow implementation – Early 2019


- After completion: data availability announcement sent to "data production" group.
- Many of the steps were initiated manually:
 - This helped to detect any anomalies,
 - but such a manual system could not scale to the higher data rates expected.
- Sequential processing under-utilised the computing resources:
 - only about 25% of available CPU was used.
 - Bottleneck: SROOT \rightarrow ROOT conversion.

30 July 2020

Automated Implementation – From mid 2019

- System automatically searches for new list_send files.
 - If found, it spools them, and initiates transfers of SROOT files.
- Queue system (using task spooler [2]):
 - Split between transfers and conversion initially.
 - Once transfers have finished: all resources are dedicated to conversion.
 - CPU utilisation increased from ~25% to ~85%.
 - Automated copy to permanent storage and release to the collaboration then follow (if the data pass quality checks).

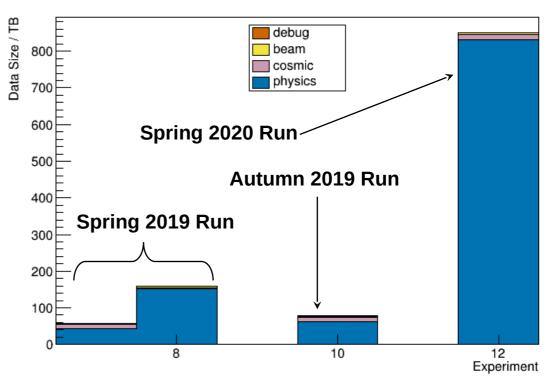

9

50 TB of Data Daily

TB / Day

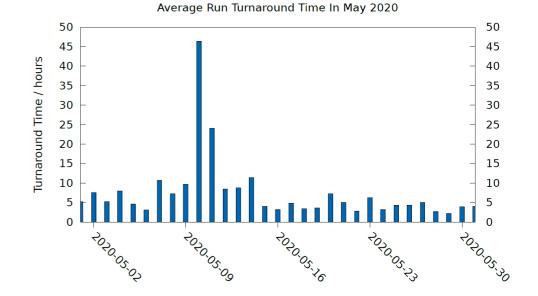
- During Spring 2020 Run:
- 50 TB of (SROOT + ROOT) data produced many days.
- ROOT file typically ~45% size of SROOT file.
- Keeping SROOT files useful for understanding/debugging early data.
- We will not store SROOT files indefinitely:
 - They will be deleted.
 - ROOT will be the <u>only</u> RAW data.

Spring 2020 Run SROOT + ROOT Raw Data

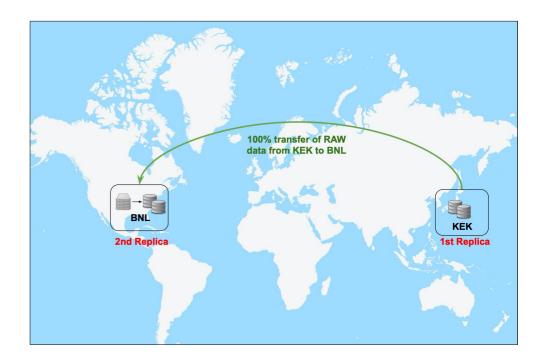


Cumulative / PB

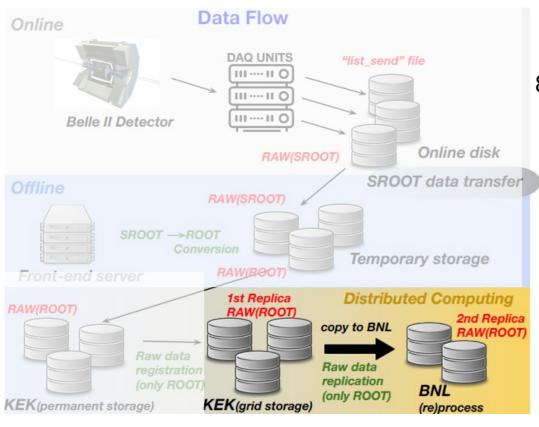
Over 1 PB of ROOT Data Recorded


- As of July 2020, the total size of ROOT files recorded so far is over 1 PB.
 - Most data are from physics runs.
 - Also beam studies, global cosmic runs, and runs for debugging.
- Luminosity will increase in future Runs:
 - Filtering at the HLT (High Level Trigger) level must be applied:
 - Will reduce data size by ~9×.
 - Maximum DAQ rate: 1.8 GB/s.
 - Data transfer system throughput over 2 GB/s demonstrated.

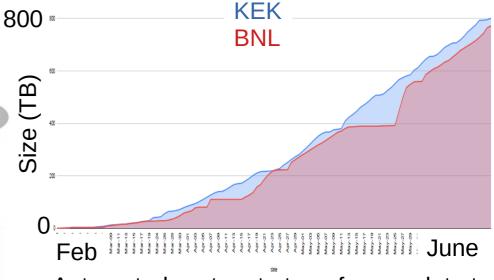
Total Size of Raw Data ROOT Files by Experiment


30 July 2020

- Turnaround time:
 - Time from end of run until ROOT files have been archived, and are available to the collaboration.
 - Generally 5 10 hours.
- Sometimes sub-detector experts need the data faster.
 - E.g. during a study with changing detector or accelerator conditions.
- We have created a "fast lane" to allow experts to request data faster.
 - For short runs, files may be available within about ten minutes.

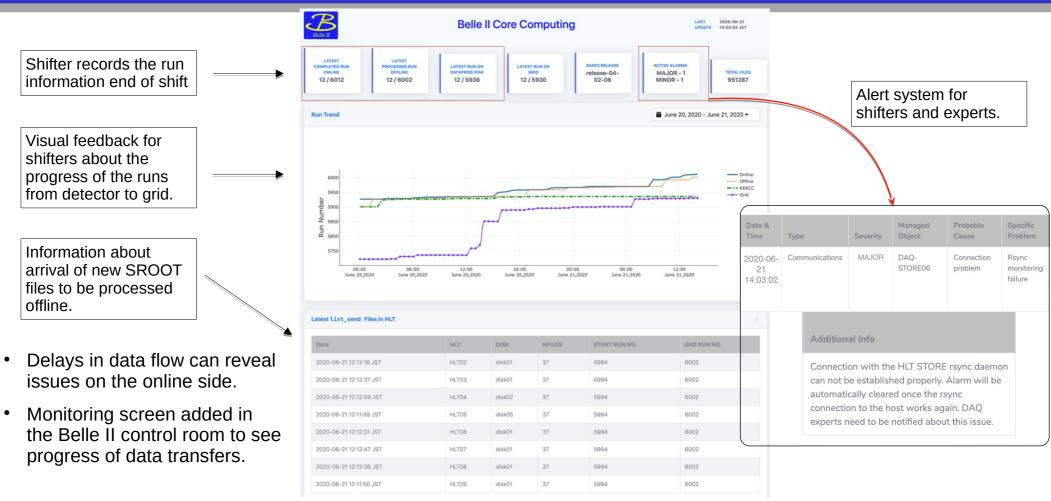

Permanent Storage of Data

- Belle II utilises the grid for distributed data analysis.
 - *DIRAC* and *BelleRawDIRAC* [3] used to distribute raw data.
- Two permanent copies:
 - One permanent copy at KEK.
 - Second permanent copy at Brookhaven National laboratory (BNL), USA.
- From 4th year of data taking operations:
 - Second permanent copy split between BNL and sites in Italy, Germany, Canada, and France.



[3] https://indico.cern.ch/event/773049/contributions/3474468/

Transfer to BNL



Cumulative raw data size at KEK and BNL

- Automated system to transfer raw data to BNL deployed during Spring 2020 run.
 - Features from, e.g. development periods, visible in above graph.

Control Room Monitoring

Summary

- Belle II is a particle physics experiment that started taking data in Spring 2019.
 - The instantaneous luminosity will increase by *O*(100) times by the end of data taking operations compared to 2019.
- An automated data transfer system has been implemented to transfer data from the detector to (multiple copies on) permanent storage.
 - This system will scale to the higher data rates expected during later years of data taking.
 - Hardware at KEKCRC replaced every 4 years, ensuring system will meet experimental needs.
- Performance monitoring and making information easily accessible to the Belle II collaboration generally have also been key to the design of the new system.
- The new system has been operating in production since June 2019, and has performed robustly.
 - Journal paper describing the system has been submitted.