

Λ_c rediscovery in early Phase 3 Belle II data

 $\label{eq:Abstract} Abstract$ This note describes $\Lambda_c^+ \to p K^- \pi^+$ reconstruction in the data sample collected by Belle II during 2019 corresponding to 8.8 fb⁻¹ of integrated luminosity.

Contents

1. Plot for approval

References

1. PLOT FOR APPROVAL

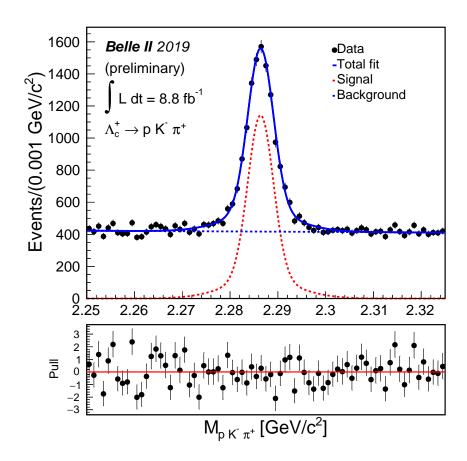


FIG. 1: This figure shows the unbinned maximum likelihood fit performed on the invariant mass distribution of $\Lambda_c^+ \to p K^- \pi^+$ in 8.8 fb⁻¹ of phase3 data.

The fitting function used to describe the signal consists of the sum of two Gaussians, whereas for the background the function chosen is a first order Chebyshev polynomial. Fig. 1 shows the fit of the invariant mass performed on the data sample collected during 2019. Several quantities of interest are listed in Table I.Reported yields and purity are calculated in a signal region of ± 10 MeV ($\sim 3\sigma$) around the mean value. Mass peak value is in perfect agreement with the PDG [1] current reported value. The average resolution (denoted as $\langle \sigma \rangle$) is calculated as:

$$<\sigma> = \sqrt{n_{g1} \cdot \sigma_{g1}^2 + (1 - n_{g1}) \cdot \sigma_{g2}^2}$$
 (1)

where σ_{g1} and σ_{g2} are the widths of the two gaussians evaluated in the fit and n_{g1} is the fraction of events under the first gaussian with the total function being normalized to one. Details about this study is reported in internal document BELLE2-NOTE-PH-2020-020.

	data (Proc11)
$\overline{\rm Peak \ position \ [MeV/c^2]}$	2286.4 ± 0.1
$<\sigma>$ [MeV/c ²]	4.287 ± 0.759
χ^2/ndf	1.09
Signal yields per $1/fb$	984 ± 6
Purity	0.508 ± 0.002

TABLE I: Comparison of signal-peak parameters, goodness of fit, signal yields / fb $^{-1}$ and purity (quoted uncertainities are statistical only).

 M. Tanabashi et al., Particle Data Group, *Review of Particle Physics*, Phys. Rev. D 98 (2018) no. 3, 030001.