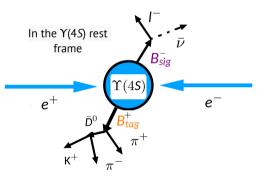
Status and Future Development of the Full Event Interpretation Algorithm at Belle II

Slavomira Stefkova on behalf of Belle II collaboration

FPCP, 11.06.2020



Event in Belle II

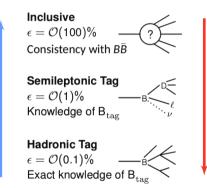
- ▷ Asymmetric e⁺ e⁻ collision at Y(4S) resonance
- $\triangleright \Upsilon(4S) \rightarrow B^+B^-$, $B^0\bar{B}^0$ with B > 96%
- If possible, reconstructs one of the B-mesons in either semileptonic or hadronic decay chains (B_{tag})
- Properties of the other B can be studied (B_{sig})
- ▷ Flavour constraint: $B_{tag}^+ \rightarrow B_{sig}^-$
- ▷ Kinematically constrained system with hadronically tagged event: $\vec{p}_{\nu} + \vec{p}_{l} = \vec{p}_{e^+e^-} - \vec{p}_{B_{tag}}$

Example of mode with hadronic B_{tag}

What is Full Event Interpretation (FEI)?

- Flexible multivariate tagging algorithm developed for B-meson reconstruction in Belle II [Keck, T. et al. Comput. Softw. Big. Sci. (2019) 3: 6]
- ▷ **Task**: Correctly identifying one *B* decay (B_{tag}) allowing for detailed investigation of the other *B* (B_{sig})
- ▷ **Use in** *B***-physics**: Especially useful when studying modes with missing energy (modes with one or more neutrinos, specific dark matter searches)
- ▷ Successor of the Belle Full Reconstruction [Feindt, M. et al. Nucl.Instrum.Meth.A 654 (2011) 432-440]
- Can be used on Belle data set

 PHYSICAL REVIEW LETTERS 124, 161803 (2020)
 PHYSICAL REVIEW D 98, 112016 (2018)

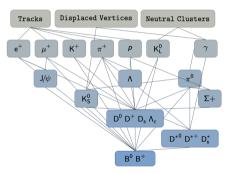

 Reference Suggestion
 Search for the rare decay of $B^* \rightarrow e^+ v_{eff}$ with improved hadronic tagging

 The Belle Collaboration, Phys. Rev. Lett. 124, 161803
 The Belle Collaboration, Phys. Rev. D 98, 112016

DESY. | S. Stefkova | FPCP, 11.06.2020

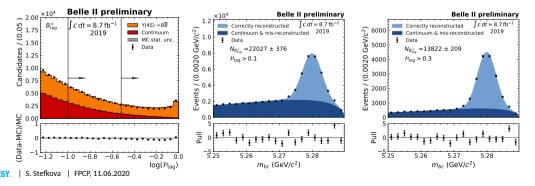
Tagging Techniques in Belle II

- Generic FEI techniques include reconstruction of the B-meson candidate with
 - $\begin{tabular}{ll} & \mathsf{Semileptonic} \ \mathsf{Tagging} \\ & \mathcal{B}(\mathsf{B}^+ \to \mathsf{SL} \ \mathsf{decays} \ \mathsf{)} \approx 20\% \end{tabular}$
 - $\triangleright~$ Hadronic Tagging $\mathcal{B}({\rm B}^+ \rightarrow {\rm Had~decays~)} \approx 15\%$
- Trade-off between efficiency, purity, and knowledge of missing kinematics
- Another possibility: dedicated signal-specific FEI

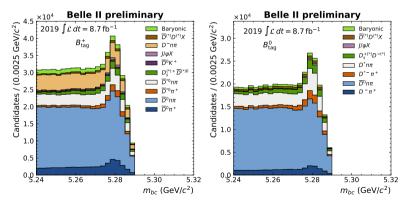

Efficiency

Purity

How Does FEI Work?

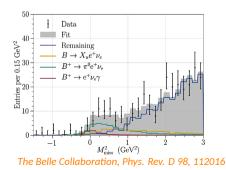

- ▷ FEI uses hierarchical approach to reconstruct O(200) decay channels via $O(10^4)$ decay chains
- ▷ Firstly tracks, neutral clusters and displaced vertices are interpreted as final state particles (FSPs) e.g e[±], µ[±], K[±], ...
- ▷ FSPs are then combined into intermediate particles until *B* candidates are formed
- Each unique particle has its own multivariate classifier which quantifies the correctness of reconstruction based on input features such as four-momentum, vertexing information...
- ▷ Usually only one *B*-meson candidate (the highest probability) is kept
- ▶ Recent development: Inclusion of baryonic modes $[\mathcal{B}(\mathsf{B}^+/\mathsf{B}^0 \rightarrow \mathsf{baryons}) \approx 5.3/2.4 \times 10^{-3}]$ DESY. | S. Stefkova | FPCP, 11.06.2020 Page 5

Schematic view


Hadronic FEI Performance in Early Belle II Data

- Evaluated with efficiency-purity scan
- ▷ Tag-side efficiency: N of correct B_{tag} candidates / N of $\Upsilon(4S)$
- ▷ **Purity**: *N* of correct B_{tag} candidates / *N* of B_{tag} candidates
- ▷ Correct B_{tag} yield: Fit to $m_{bc} = \sqrt{\frac{s}{4}} p_{B_{tag}}^{*2}$
- $\triangleright p_{B_{tag}}^{*2} :=$ three-momentum of B_{tag} candidate, $\sqrt{s} :=$ beam energy (Υ (4S) frame)
- ▷ N of correct B_{tag} candidates can be controlled with B classifier value: $\mathcal{P}_{B_{tag}}$

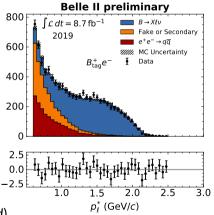
Effect of Baryonic Modes on Hadronic FEI Performance


- ▷ Inclusion of baryonic modes improves hadronic tag-side efficiency by 3% (2%) for $B^+(B^0)$
- ▷ Below m_{bc} distribution highlighting contributions from several decay modes for B^+ and B^0 in early Belle II Data

Generic FEI Performance Comparison

MC tag-side efficiency @10% purity	Had. B ⁺ /B ⁰ [%]	SL. B ⁺ /B ⁰ [%]
Full Reconstruction Belle	0.28/0.18	0.67/0.63
FEI Belle	0.76/0.46	1.80/2.04
N of correct B_{tag} per 1 fb $^{-1}$ in Belle (FEI)	8350/5060	19800/22440

- FEI outperforms Full Reconstruction
- ▷ Search for $B \rightarrow l\nu\gamma$:
 - Analyses with both Belle algorithms
 - FEI improved sensitivity


Hadronic FEI Calibration in Early Belle II Data

Calibration: difference in tagging efficiency between data and MC

- Sources: hadronic branching fraction ratios, simulation 600 of detector, dynamics of the hadronic decays...
- ▷ Calibration Strategy: measure signal-side yield in wellknown, high B channel

Steps:

- ▷ Reconstruct $B_{sig} := B \rightarrow X l \nu$ with specific selection
- \triangleright Extract the number of signal events: Fit to p_l^*
- ▷ Derive calibration factors: $\epsilon_{(DATA/MC)}$
- ▷ Preliminary $\epsilon_{(\text{DATA/MC})}(\mathbf{B}_{tag}^+\mathbf{e}^-) \approx 0.60$ (to be improved)
- Calibration factors used to correct the tag-side efficiency in physics measurements DESY. | S. Stefkova | FPCP, 11.06.2020

Upcoming FEI-related Work

Calibration plans:

- \triangleright Hadronic FEI calibration with $B \rightarrow D^{(*)} l \nu$
- Semileptonic FEI calibration

Expected physics results with FEI:

- ▷ Observation of $B \rightarrow D^{(*)} l \nu$, J/ ψ X, $B \rightarrow \pi l \nu$
- \triangleright B \rightarrow I ν , B \rightarrow X_uI ν , B \rightarrow h $\nu\nu$

Future FEI Developments:

▷ FEI for $\Upsilon(5S)$ resonance

>
$$\Upsilon(5S) \to \mathsf{B}^{(*)} = 76.2\%, \,\Upsilon(5S) \to \mathsf{B}^{(*)}_{\mathsf{s}} = 20.1\%$$

- ▷ Physics target: $B_s^0 \rightarrow \tau \tau$, $B_s^0 \rightarrow l \tau$, $B_s^0 \rightarrow \phi \nu \nu$
- Deep classifiers in FEI instead of FastBDTs

[Keck T., Comput. Softw. Big. Sci. 1, 2 (2017)],

exploration of graph convolutional networks [Kipf N. T, Welling M. 2016] DESY. | S. Stefkova | FPCP, 11.06.2020

Used B_s^0 channels

$$\begin{array}{l} B^0_s \to D^-_s D^+_s \\ B^0_s \to D^+_s D^-_s \\ B^0_s \to D^-_s X^+_s \\ B^0_s \to D^-_s X^+_s \\ B^0_s \to D^-_s \pi^+_s \\ B^0_s \to D^-_s \pi^+_s \\ B^0_s \to D^-_s D^0_s \\ B^0_s \\ D^-_s D^0_s \\ D^0_s \\ D^-_s D^0_s \\ D^-_s \\ \\$$

Conclusion

- Generic FEI algorithm now includes baryonic modes
- ▷ FEI performance with early Belle II data corresponding to $\mathcal{L} = 8.7$ fb⁻¹ was presented
- FEI performs significantly better than its Belle predecessor
- ▷ Calibration with hadronic tag in early Belle II data is being performed
- \triangleright Exciting physics analyses utilising FEI algorithm such as $B \rightarrow K^{(*)} \nu \nu$ are under-way
- \triangleright New developments of FEI algorithm can open door to B_s^0 physics in Belle II

