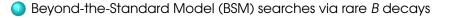
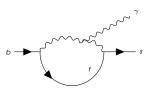
Radiative and electroweak penguin decays: results and prospects at Belle II

Soumen Halder on behalf of the Belle II collaboration

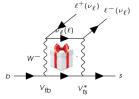
10th June, 2020 (Wednesday)



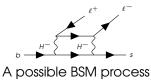
S.Halder


Results and prospects of EWP decays at Belle II

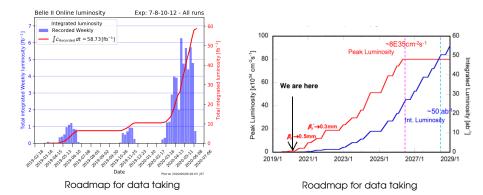
- Belle II operation status
- 3 Analysis strategy
- Radiative penguin B decays
- Selectroweak penguin B decays
- Conclusion


BSM searches via rare B decays

- $b \rightarrow s(d)$ is an FCNC transition which is not allowed at tree level in the standard model (SM)
 - \rightarrow loop and CKM suppressed
- BSM particles can appear in loop, change branching fractions and/or other observables


 $b
ightarrow s\gamma$ (radiative penguin)

b to the s



 $b \to {\it s\ell\ell} \mbox{ (EW penguin)} \\ SM \mbox{ allowed processes}$

 $b
ightarrow {\it s}\ell\ell$ (box diagram)

Belle II operation

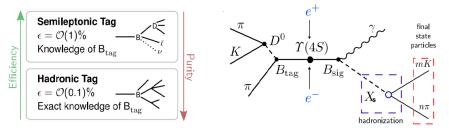
- Collected 0.5 fb $^{-1}$ in 2018
- Recorded about 60 fb⁻¹ since 2019
- Analyses performed on upto 8.7 fb⁻¹ of data
- Goal: integrate upto 50 ab⁻¹ by 2029

For more information on Belle II see Phillip Urquijo's talk

S.Halder

Results and prospects of EWP decays at Belle II

Analysis strategy


Analysis strategy

• Exclusive: Reconstruct a specific decay channel, say $B \rightarrow K^* \gamma$

• Inclusive: $B \rightarrow X_s \gamma$, where X_s is any strange final state

^t Semi-inclusive or sum-of-exclusive: Reconstruct X_s from as many final states as possible

* Fully inclusive¹

Hadronic tagged $B \rightarrow X_s \gamma$ event in center-of-mass frame

¹For details look FEI talk by Slavomira Stefkova

Belle II operation status

Analysis strategy

Radiative penguin B decays

Electroweak penguin B decays

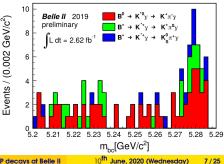
Conclusion

First penguin decay observed at Belle II ($B \rightarrow K^* \gamma$)

Motivation

• Evidence (3.1σ) for isospin violation from recent measurement

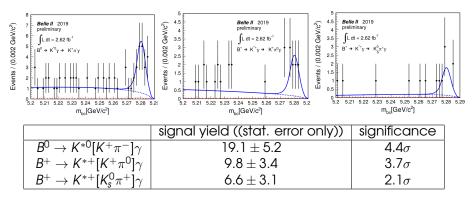
 $\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)} = [+6.2 \pm 1.5(\text{stat}) \pm 0.6(\text{syst}) \pm 1.2(f_{+-}/f_{00})]\%$ (PRL 119 (2017) 191802)


- Possible window for BSM physics? (PRD 88 (2013) 094004)
- At Belle II isospin violation can be observed $> 5\sigma$ precision with 5 ab⁻¹

Analysis procedure \rightarrow BELLE2-NOTE-PL-2019-021

- Search for $B \to K^* \gamma$ using three decay modes
- Dominant $a\bar{a}$ events suppressed with a FastBDT multivariate classifier (arXiv:1609.06119).

•
$$\Delta E (= E_B^* - E_{beam}) \in [-0.2, 0.08] \text{ GeV}$$


 Clear peak in the beam-energy-constrained mass $M_{\rm bc} (= \sqrt{E_{\rm begm}^{*2} - p_B^{*2}})$ distribution near the nominal B mass

Results and prospects of EWP decays at Belle II

Signal extraction of $K^*\gamma$ process

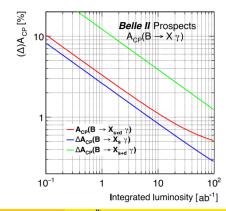
• Fit the M_{bc} distribution to extract signal yield



- Yield agrees with the expectation from world-average branching fraction
- ullet Combined significance exceeds 5σ

Rediscovery of radiative penguin decay at Belle II

Inclusive branching fraction measurement


- Theoretically more reliable than exclusive
 - $\mathcal{B}^{SM}(B \to X_s \gamma) = (3.36 \pm 0.23) \times 10^{-4} \text{ for } E_{\gamma} > 1.6 \text{ GeV} (\underline{PRL 114 (2015) 22})$
- In effective field theory it puts a strong constraint on the Wilson coefficient $\overline{C_7}$
- Measurements (eg. <u>arxiv:1608.02344</u>) are consistent with SM and limited by systematic uncertainty
- Goal for Belle II
 - Fully inclusive reduce systematics by better modelling of neutral hadrons faking photons
 - Sum-of-exclusive increase the number of modes to reduce the systematic from X_S hadronization
 - Hadronic tagging method increased purity so that the $E_{\gamma}^{\mathrm{threshold}}$ can be reduced

Inclusive direct CP violation

•
$$A_{CP}^{X_{s+d}\gamma} = \frac{\Gamma(\bar{B} \rightarrow X_{s+d}\gamma) - \Gamma(\bar{B} \rightarrow X_{s+d}\gamma)}{\Gamma(\bar{B} \rightarrow X_{s+d}\gamma) + \Gamma(\bar{B} \rightarrow X_{s+d}\gamma)} \sim \mathcal{O}(\Lambda_{QCD}/m_b)$$

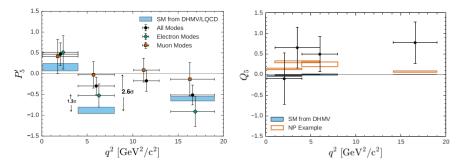
 \rightarrow Deviation from zero indicates BSM physics (PRL 106 (2011) 141801))
 $\rightarrow A_{CP}^{X_{s+d}\gamma} = (2.2 \pm 3.9 \text{ (stat)} \pm 0.9 \text{ (syst)})\% (\underline{arxiv:1608.02344})$
• $\Delta A_{CP}(\bar{B} \rightarrow X_s\gamma) = A_{CP}(\bar{B}^+ \rightarrow X_s^+\gamma) - A_{CP}(\bar{B}^0 \rightarrow X_s^0\gamma) \propto Im(C_{8g}/c_{7\gamma}) \rightarrow \text{zero in SM}$
 $\rightarrow \Delta A_{CP} = (3.69 \pm 2.65 \text{ (stat)} \pm 0.76 \text{ (syst)})\% (\text{ PRD 99 (2019) 3})$

- Goal for Belle II
 - Reduce statistical uncertainty
 - Systematic uncertainty due to detector asymmetry could be reduced using control samples
 - More measurements at Belle II of A_{CP} in rare charmless decays, that can fake the inclusive signal → Room for improvement using more realistic peaking background study

Beyond-the-Standard Model (BSM) searches via rare *B* decays

Belle II operation status

Analysis strategy

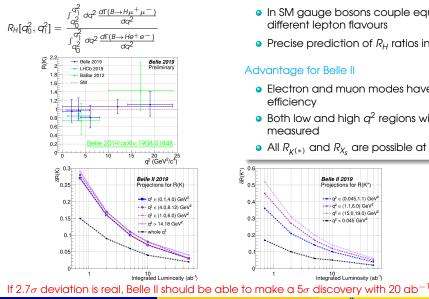

Radiative penguin B decays

Electroweak penguin B decays

Conclusion

Angular analysis: $B \rightarrow K^* \ell^+ \ell^-$

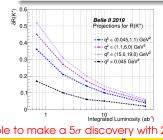
- Angular observables $P'_{i=4,5,6,8}$ are suggested to be theoretically robust (JHEP 05 (2013) 137)
- Sensitive to Wilson coefficients C_7 , C_9 and C_{10}
- Lepton flavour universality (LFU) test with $Q_i = P_i^{\mu} P_i^{e}$



Distribution of ${\it P}_5'$ (left) and ${\it Q}_5'({\rm right})$ in Belle measurement

• Belle measurement (PRL 118, 111801) uncertainty is statistically dominated

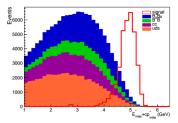
• Sensitivity to P_5' with full Belle II data in the 4-8 ${\rm GeV}^2/c^2$ bin will be around 0.04 (PTEP 2020(2020) 2)


Lepton flavor universality test

- In SM gauge bosons couple equally to different lepton flavours
- Precise prediction of R_H ratios in SM

Advantage for Belle II

- Electron and muon modes have similar efficiency
- Both low and high q^2 regions will be measured
- All $R_{k(*)}$ and R_{X_c} are possible at Belle II


Results and prospects of EWP decays at Belle II

$B ightarrow K^{(*)} u ar{ u}$

- Theoretically cleaner w.r.t $b \rightarrow s \ell^+ \ell^-$
 - No photon mediated (Q7) contribution
 - BF allows to extract form factors to high accuracy
- Clean observable: K^* longitudinal polarisation fraction (F_L).
 - $F_L^{\rm SM} = 0.47 \pm 0.03$
 - Sensitive to BSM right-handed-current $\rightarrow Q_R^{\nu}$ (JHEP 04 (2009) 022)
- Interesting in dark matter context (JHEP 03 (2012) 090)
- ⇒ Measurement in Belle (PRD 87, 111103) and BaBar (PRD 82, 112002) provided UL on the BF

Belle II prospects

- Expect to observe $B \to K^* \nu \bar{\nu}$ decays with $\approx 5 \text{ ab}^{-1}$
- 10% BF measurement possible with 50 ab⁻¹
- Sensitivity on F_L with 50 ab⁻¹ is about 0.08 for both $K^{*0/+}\nu\bar{\nu}$

Distributions of missing 4-momentum in the CM frame with hadronic tag for $B^0 \rightarrow K^{*0}[K^+\pi^-]\nu\bar{\nu}$ (Belle II MC with arbitrary signal normalisation (PTEP 2020(2020) 2))

Conclusion

Conclusion

- Belle II is collecting data and has recorded 55 fb^{-1} .
- Clean environment at Belle II grants access to unique observables in rare B decays
- We have made a beginning with the rediscovery of a radiative *B* decay
- We expect to provide model-independent constraints on BSM physics, thanks to the large data sample of Belle II

Backup

BSM searches via radiative or EWP B decays

$$\mathcal{H}_{ ext{eff}} = \sum_{i} \lambda^{i}_{\textit{CKM}} C_{i}(\mu) \mathcal{Q}_{i}(\mu) + ext{h.c}$$

- $C_i(\mu)$ Short distance contribution (physics above EW scale)
- $\bullet \; {\cal Q}_{\rm i}(\mu)$ Local operators constructed from fields below EW scale, encode large distance contribution

NP can contribute through,

- $C_i = C_i^{\text{SM}} + C_i^{\text{NP}}$
- Generate new operators not present in SM

Few SM operators

•
$$Q_7 = \frac{e}{16\pi^2} m_b (\bar{q}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}$$

•
$$Q_8 = \frac{g_s}{16\pi^2} m_b (\bar{q}_L \sigma^{\mu\nu} T^a b_R) G^a_{\mu\nu}$$

•
$$Q_9 = \frac{e}{16\pi^2} (\bar{q}_L \gamma_\mu b_L) \sum_{\ell} (\bar{\ell} \gamma^\mu \ell)$$

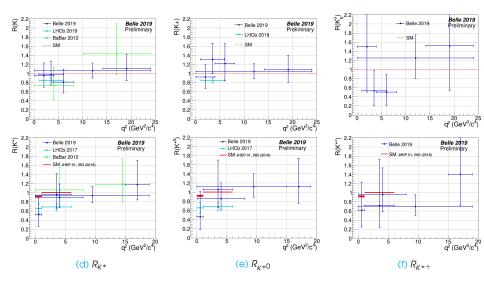
- For $b \rightarrow s\gamma$ processes C_7
- For $b \rightarrow s\gamma$ processes C_7, C_9 and C_{10}
- For $b \to s \nu \bar{\nu} \ Q_{\nu}$ is sensitive.

$$\mathbf{Q}_{10} = \frac{e}{16\pi^2} (\bar{q}_L \gamma_\mu b_L) \sum_{\ell} (\bar{\ell} \gamma^\mu \gamma_5 \ell)$$

•
$$Q_{\nu} = \frac{e}{16\pi^2} (\bar{q}_L \gamma_{\mu} b_L) \sum_{\ell} (\bar{\nu}_{\ell L} \gamma^{\mu} \nu_{\ell L})$$

beyond SM operator

•
$$Q_{\nu\ell}^{L(R)} = \frac{e}{16\pi^2} (\bar{q}_{L(R)}\gamma_\mu b_{L(R)}) (\bar{\nu_{\ell L}}\gamma^\mu \nu_{\ell L})$$


Radiative penguin B decay

Sensitivities of observables for the radiative inclusive B decay. A photon energy threshold of $E_{\gamma} > 1.9 \text{GeV}(E_{\gamma} > 2.0 \text{GeV})$ is assumed for the $B \rightarrow X_{s\gamma}(B \rightarrow X_{d\gamma})$ analysis. Some sensitivities at Belle are extrapolated to 0.71 ab⁻¹. In the case of the branching ratios the quoted uncertainties are relative ones, while for what concerns Δ_{0+} , A_{CP} and ΔA_{CP} they are absolute numbers.²

Observables	Belle 0.71(0.12)ab ⁻¹	Belle II 5 ab ⁻¹	Belle II 50 ab^{-1}
$Br(B \rightarrow X_{s\gamma})_{inc.}^{lep-tag}$	5.3%	3.9%	3.2%
$Br(B \rightarrow X_{s\gamma})_{inc}^{had-tag}$	13%	7.0%	4.2%
$Br(B \rightarrow X_{s\gamma})_{sum-of-ex}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B o X_{s\gamma})_{sum-of-ex}$	2.1%	0.81%	0.63%
$\Delta_{0+}(B o X_{s+d\gamma})_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%
$A_{CP}(B \rightarrow X_{s\gamma})_{sum-of-ex}$	1.3%	0.52%	0.19%
$A_{CP}(B^0 \rightarrow X^0_{s\gamma})_{sum-of-ex}$	1.8%	0.72%	0.26%
$A_{CP}(B^+ o X^+_{s\gamma})_{ m sum-of-ex}$	1.8%	0.69%	0.25%
$A_{CP}(B ightarrow X_{s+d\gamma})_{inc}^{lep-tag}$	4.0%	1.5%	0.48%
$A_{CP}(B \rightarrow X_{s+d\gamma})_{inc}^{had-tag}$	8.0%	2.2%	0.70%
$\Delta A_{CP}(B ightarrow X_{s\gamma})_{sum-of-ex}$	2.5%	0.98%	0.30%
$\Delta A_{CP}(B \to X_{s+d\gamma})_{\rm inc}^{\rm had-tag}$	16%	4.3%	1.3%

²PTEP 2020(2020) 2

Lepton universality test

Angular analysis: $B \to K^* \ell^+ \ell^-$

For $\bar{B}^0 \to \bar{K}^{*0} [K^- \pi^+] \mu^+ \mu^-$,

$$\frac{1}{d\Gamma/dq^2}\frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi}I(q^2,\theta_K,\theta_\ell,\phi)$$

The corresponding expression for the CP-conjugated mode is $B^0 o K^{*0} [K^+\pi^-] e^+e^-$,

$$\frac{1}{d\bar{\Gamma}/dq^2}\frac{d^4\bar{\Gamma}}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi}\bar{I}(q^2,\theta_K,\theta_\ell,\phi)$$

, where $\overline{l}(q^2, \theta_K, \theta_\ell, \phi)$ is obtained by, $l_{1,2,3,4,7}^{(\alpha)} \rightarrow \overline{l}_{1,2,3,4,7}^{(\alpha)}$ and $l_{5,6,8,9}^{(\alpha)} \rightarrow -\overline{l}_{5,6,8,9}^{(\alpha)}$.

Now define
$${}^{a}S_{i}^{(a)} = (I_{i}^{(a)} + \overline{I}_{i}^{(a)}) / \frac{d(\Gamma + \overline{\Gamma})}{dq^{2}} \text{ and } A_{i}^{(a)} = (I_{i}^{(a)} - \overline{I}_{i}^{(a)}) / \frac{d(\Gamma + \overline{\Gamma})}{dq^{2}}$$

Define ${}^{b}P_{i=4,5,6,8}' = \frac{S_{j=4,5,6,8}}{\sqrt{F_{L}(1 - F_{L})}}$

^aJHEP 01 (2009) 019 ^bJHEP 05 (2013) 137

$$\begin{split} I(q^2,\theta_\ell,\theta_{K^*},\phi) &= [l_1^s \sin^2 \theta_{K^*} + l_1^c \cos^2 \theta_{K^*} + (l_2^s \sin^2 \theta_{K^*} + l_2^c \cos^2 \theta_{K^*}) \cos 2\theta_\ell + .. \\ \text{where, } \theta_{K^*} \text{ is angle between } K^{*0} \ (\bar{K}^{*0}) \text{ and } K^+(K^-) \text{ in } B(\bar{B}) \text{ rest frame,} \\ \theta_\ell \text{ is angle between } \ell^+(\ell^-) \text{ and the direction of di-lepton system in the } B(\bar{B}) \text{ rest frame}. \end{split}$$

S.Halder

Angular analysis: $B \rightarrow K^* \ell^+ \ell^-$

TABLE I. Fit results for P'_4 and P'_5 for all decay channels and separately, for the electron and muon modes. The first uncertainties are statistical and the second systematic.

q^2 in GeV ² / c^2	P_4'	$P_4^{e\prime}$	$P_4^{\mu\prime}$	P_5'	$P_5^{e\prime}$	$P_5^{\mu\prime}$
[1.00, 6.00]			$-0.22^{+0.35}_{-0.34}\pm0.15$			
[0.10, 4.00]			$-0.38^{+0.50}_{-0.48}\pm0.12$			
[4.00, 8.00]	$-0.34^{+0.18}_{-0.17}\pm0.05$	$-0.52^{+0.24}_{-0.22}\pm0.03$	$-0.07^{+0.32}_{-0.31}\pm0.07$	$-0.30^{+0.19}_{-0.19}\pm0.09$	$-0.52^{+0.28}_{-0.26}\pm0.03$	$-0.03^{+0.31}_{-0.30}\pm0.09$
[10.09, 12.90]	$-0.18^{+0.28}_{-0.27}\pm0.06$		$-0.40^{+0.33}_{-0.29}\pm0.09$	$-0.17^{+0.25}_{-0.25}\pm0.01$		$0.09^{+0.29}_{-0.29}\pm0.02$
[14.18, 19.00]	$-0.14^{+0.26}_{-0.26}\pm0.05$	$-0.15^{+0.41}_{-0.40}\pm0.04$	$-0.10^{+0.39}_{-0.39}\pm0.07$	$-0.51^{+0.24}_{-0.22}\pm0.01$	$-0.91^{+0.36}_{-0.30}\pm0.03$	$-0.13^{+0.39}_{-0.35}\pm0.06$

Belle Result (PRL 118, 111801)

4	$1.0 < q^2 < 6.0 \mathrm{GeV}^2/c^4$	6	$0.0 < q^2 < 8.0 \text{GeV}^2/c^4$
P_1	$0.088 \pm 0.235 \pm 0.029$	P_1	$-0.071 \pm 0.211 \pm 0.020$
P_2	$0.105 \pm 0.068 \pm 0.009$	P_2	$0.207 \pm 0.048 \pm 0.013$
P_3	$-0.090 \pm 0.139 \pm 0.006$	P_3	$-0.068 \pm 0.104 \pm 0.007$
P'_4	$-0.312\pm0.115\pm0.013$	P'_4	$-0.574 \pm 0.091 \pm 0.018$
P'_5	$-0.439 \pm 0.111 \pm 0.036$	P'_5	$-0.583 \pm 0.090 \pm 0.030$
P_6'	$-0.293 \pm 0.117 \pm 0.004$	P'_6	$-0.155 \pm 0.098 \pm 0.009$
P'_8	$0.166 \pm 0.127 \pm 0.004$	P'_8	$-0.129 \pm 0.098 \pm 0.005$

LHCb Result (arxiv:2003.04831)

Lepton flavor universality test

- LHCb result $R_{k} = 0.846^{+0.060+0.016}_{-0.054-0.014}$ for $q^{2} \in [1.0, 6.0] \text{GeV}^{2}/c^{4}$ (<u>PRL 122, 191801</u>)
- Belle result, 2.7 σ deviation in 3rd bin (arxiv 1908.01848))

$$R_{K} = \begin{cases} 0.95 \stackrel{+0.27}{-0.24} \pm 0.06 & q^{2} \in (0.1, 4.0) \quad \text{GeV}^{2}/c^{4}, \\ 0.81 \stackrel{+0.28}{-0.23} \pm 0.05 & q^{2} \in (4.0, 8.12) \quad \text{GeV}^{2}/c^{4}, \\ 0.98 \stackrel{+0.27}{-0.23} \pm 0.06 & q^{2} \in (1.0, 6.0) \quad \text{GeV}^{2}/c^{4}, \\ 1.11 \stackrel{+0.29}{-0.26} \pm 0.07 & q^{2} > 14.18 \quad \text{GeV}^{2}/c^{4}. \end{cases}$$

Electroweak penguin B decays

The Belle II sensitivities to $B \rightarrow K^{(*)}\ell^+\ell^-$ observables that allow to test lepton flavour universality. Some numbers at Belle are extrapolated to 0.71 ab⁻¹

Observables	Belle 0.71(0.12)ab ⁻¹	Belle II 5 ab ⁻¹	Belle II 50 ab^{-1}
$R_{K}([1.0, 6.0]GeV^{2})$	28%	11%	3.6%
$R_{K}([> 14.4]GeV^{2})$	30%	12%	3.6%
$R_{K*}([1.0, 6.0] GeV^2)$	26%	10%	3.2%
$R_{K*}([> 14.4]GeV^2)$	24%	9.2%	2.8 %
$R_{\chi_{\rm c}}([1.0, 6.0] GeV^2)$	32%	12%	4.0%
$R_{\chi_s}([> 14.4]GeV^2)$	28%	11%	3.4%

The Belle II sensitivities of the angular observables in $B \to K^{(*)}\ell^+\ell^-$. Some numbers at Belle are extrapolated to 0.71 ab⁻¹

Observables	Belle 0.71(0.12)ab ⁻¹	Belle II 5ab ⁻¹	Belle II 50 ab^{-1}
$P'_{5}([1.0, 2.5]GeV^{2})$	0.47	0.17	0.054
P ₅ '([2.5, 4.0]GeV ²)	0.42	0.15	0.049
$P'_{5}([4.0, 6.0]GeV^{2})$	0.34	0.12	0.040
$P'_5([> 14.2]GeV^2)$	0.23	0.088	0.027

$$B \to K^{(*)} \nu \bar{\nu}$$

-

Sensitivities to the modes involving neutrinos in the final states. We assume that $5ab^{-1}$ of data will be taken on the $\Upsilon(5S)$ resonance at Belle II. Some numbers at Belle are extrapolated to $0.71ab^{-1}(0.12ab^{-1})$ for the $B_{u,d}(B_s)$ decay.

Observables	Belle 0.71(0.12)ab ⁻¹	Belle II 5 ab $^{-1}$	Belle II 50 ab^{-1}
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_l(B^0 \to K^{*0} \nu \bar{\nu})$	-	-	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	-	-	0.077

$$B
ightarrow K^{(*)}
u ar{
u}$$

Defining *F*_L: JHEP 04 (2009) 022

 $\begin{array}{l} \frac{d\Gamma_{L}}{ds_{B}}=3m_{B}^{2}|A_{0}|^{2}, \ \frac{d\Gamma_{L}}{ds_{B}}=3m_{B}^{2}|A_{0}|^{2} \\ \text{where } s_{B}=q^{2}/m_{B}^{2} \ \text{and } q \ \text{is invariant mass of } \nu\bar{\nu} \\ \frac{d^{2}\Gamma}{ds_{B}d\cos\theta}=\frac{3}{4}\frac{d\Gamma_{L}}{ds_{B}}\sin^{2}\theta+\frac{3}{2}\frac{d\Gamma_{L}}{ds_{B}}\cos^{2}\theta \\ \text{where } \theta \ \text{is the angle between the } K^{*} \ \text{flight direction in the } B \ \text{rest frame and the } K \ \text{flight direction in the } K \ \text{max frame and the } K \ \text{flight direction in the } K^{*} \ \text{flight direction analysis.} \\ \frac{d\Gamma_{L}}{ds_{B}}=\frac{d\Gamma_{T}}{ds_{B}}+\frac{d\Gamma_{L}}{ds_{B}} \\ \Rightarrow F_{L}=\frac{d\Gamma_{L}}{ds_{B}} \ \text{and } F_{T}=1-F_{L} \end{array}$