Charm and Charmonium

At Belle II

Roy Briere

CarnegieMellon

8 June 2020

Sபper KEK日

Outline

Overview
Context \& Competition Belle II Data Plots

Mixing
CP Violation
Rare Decays
(Semi-)Leptonic
Spectroscopy \& Baryons
Charmonium
Exotics

Introduction

Open Charm

Charmonium

Summary

Overview

PLAN:

We're aiming for $50 \mathbf{a b}^{-1}$: more than 50x Belle dataset
\rightarrow Intermediate datasets will already be a big step forward High statistics should fuel new ideas for analysis (topics, techniques, ...)
PROJECTIONS: Prog. Th. Exp. Phys. 2019, 1232C01
Belle II Physics Book [arXiv 1808.10567]
Extensive work by Belle II Collaboration \& Theorists Roadmap for physics with projections, comparisons, ... A rich program awaits !

PROGRESS:

Intensive work on tuning, shielding, background rates, ... May 2020: Operating at levels similar to best Belle numbers

Experimental Context

BESIII: absolute BFs, (semi-)leptonics, charmonia, exotics (XYZ) Statistics limit CPV, rare decays; no boost for time-dependence LHCb: excels at CPV, lifetimes, mixing, rare decays, spectroscopy, Some analyses with $\pi^{0} \&$ single γ; recent $\mathrm{B}_{(\mathrm{s})}$ semileptonic (!)

Belle II can generally cover all of the above topics
LHCb stats are overwhelming for charged final states (incl. K_{s}) BESIII cleanliness very powerful when statistics suffice But Belle II can perform world's best analyses in many cases, as well as verify results from others

Open charm mesons, baryons: from continuum (typically)
Cross-sections (in nb) : $0.6+0.6 \mathrm{D}^{*+}+\mathrm{D}^{* 0} \quad 0.2 \mathrm{D}_{\mathrm{s}} 0.2 \Lambda_{\mathrm{c}}$ $\mathrm{nb} \times \mathrm{ab}^{-1}=10^{9} \rightarrow$ tens of billions produced in final samples
Charmonium (incl. Exotics) from B decays, ISR, two-photon

Physics Context

Precision Studies of tree-level processes :

Over-constrain CKM:
\rightarrow (Semi-)leptonic - CKM matrix; decay constants, form factors Search for anomalous CPV
\rightarrow T-odd triple products
\rightarrow Direct CP asymmetries : especially SCS decays

Suppressed decays (loops) :

FCNC : Radiative modes, di-leptons
Forbidden decays:
Lepton flavor violation, ...

Belle II Data: Open Charm

D^{0} mass peak in $\mathrm{K}^{-} \pi^{+}$

More plots in other FPCP2020 talks form Belle II \rightarrow Look for more updates by ICHEP2020

Vertexing

Current detector:

 4 layers of Si strips + inner pixel layer

Detector performance: $\sim 12 \mu \mathrm{~m}$ impact parameter resolution $\sim 40 \mu \mathrm{~m} \mathrm{D}^{0}$ flight path resolution \rightarrow About twice as good as first B factories [pixels at small radius]

4 Si strip layers 2 pixel layers
readout strip pitch: $50-75 \mu \mathrm{~m}$ \& 160-240 $\mu \mathrm{m}$ $50 \times(50-85) \mu \mathrm{m}$ pixels

Charm Mixing

Belle II Final Reach*

Channel	Observable	Belle/BaBar Measurement		Scaled	
		$\mathcal{L}\left[\mathrm{ab}^{-1}\right]$	Value	$5 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
Mixing and Indirect (time-dependent) CP Violation					
$D^{0} \rightarrow K^{+} \pi^{-}$	$x^{\prime 2}(\%)$	0.976	0.009 ± 0.022	± 0.0075	± 0.0023
(no $C P V$)	$y^{\prime}(\%)$		0.46 ± 0.34	± 0.11	± 0.035
($C P V$ allowed)	$\|q / p\|$	World Avg. [230] with LHCb	$0.89{ }_{-0.07}^{+0.08}$	± 0.20	± 0.05
	$\phi\left(^{\circ}\right)$		$-12.9{ }_{-8.7}^{+9.9}$	$\pm 16^{\circ}$	$\pm 5.7^{\circ}$
$D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$	$x^{\prime \prime}$ (\%)	0.384	$2.61{ }_{-0.68}^{+0.57} \pm 0.39$	-	± 0.080
	$y^{\prime \prime}$ (\%)		$-0.06_{-0.64}^{+0.55} \pm 0.34$	-	± 0.070
$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$	x (\%)	0.921	$0.56 \pm 0.19_{-0.08}^{+0.04}{ }_{-0.08}^{+0.06}$	± 0.16	± 0.11
	$y(\%)$		$0.30 \pm 0.15_{-0.05}^{+0.04}{ }_{-0.07}^{+0.03}$	± 0.10	± 0.05
	$\|q / p\|$		$0.90{ }_{-0.15}^{+0.16}{ }_{-0.04}^{+0.05}{ }_{-0.05}^{+0.06}$	± 0.12	± 0.07
	$\phi\left(^{\circ}\right)$		$-6 \pm 11 \pm 3_{-4}^{+3}$	± 8	± 4

Other modes may be interesting for time-dependent analysis $\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-} \pi^{0}, \ldots$

* = Belle II Physics Book; PETP 2019, 123C01 (2019)

CP Asymmetries

CPV can be found in mixing, and also in direct asymmetries Many modes exploit Belle II's excellent CsI calorimetry :
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \pi^{0}, \pi^{0} \pi^{0}$
$\mathrm{D}^{+} \rightarrow \pi^{+} \pi^{0}$
$\mathrm{D}_{\mathrm{s}}{ }^{+} \rightarrow \pi^{+} \pi^{0}$ and others: $\quad \eta \& \eta^{\prime}$ modes, multi-body, ...
Neutral D : need D* tag ; small tag asymmetries to study
[easier than LHCb production asymmetry]
ALSO: T-odd triple products (four-body final states)
Use D Dbar difference to cancel final-state interaction mimicry

CP \& Rare Decays

FCNC: Radiative Decays: $\mathrm{D}^{0} \rightarrow \varrho \gamma, \phi \gamma, \mathrm{~K}^{*} \gamma$ Single photons = good modes for Belle II !
Measure CP asymmetries: reach is $\pm 2 \%, \pm 1 \%, \pm 0.3 \%$
FCNC: dileptons \rightarrow daunting LHCb competition !

CP Asymmetries

Belle results and final Belle II precision*

Mode	$\mathcal{L}\left(\mathrm{fb}^{-1}\right)$	$A_{C P}(\%)$	Belle II $50 \mathrm{ab}^{-1}$
$D^{0} \rightarrow K^{+} K^{-}$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03
$D^{0} \rightarrow \pi^{+} \pi^{-}$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^{0} \rightarrow \pi^{0} \pi^{0}$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
$D^{0} \rightarrow K_{S}^{0} \pi^{0}$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.02
$D^{0} \rightarrow K_{S}^{0} K_{S}^{0}$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23
$D^{0} \rightarrow K_{S}^{0} \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^{0} \rightarrow K_{S}^{0} \eta^{\prime}$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	532	$+0.43 \pm 1.30$	± 0.13
$D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$	281	-0.60 ± 5.30	± 0.40
$D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$	281	-1.80 ± 4.40	± 0.33
$D^{+} \rightarrow \phi \pi^{+}$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04
$D^{+} \rightarrow \pi^{+} \pi^{0}$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17
$D^{+} \rightarrow \eta \pi^{+}$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^{+} \rightarrow \eta^{\prime} \pi^{+}$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^{+} \rightarrow K_{S}^{0} \pi^{+}$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.02
$D^{+} \rightarrow K_{S}^{0} K^{+}$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.04
$D_{s}^{+} \rightarrow K_{S}^{0} \pi^{+}$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05

Leptonic and Semileptonic

PHYSICS: Precise decay constants \& form factors
Test Lattice QCD $\left|V_{c d}\right| f_{D} \quad\left|V_{c s}\right| f_{D s} \quad\left|V_{c d}\right| f^{\pi}(0) \quad\left|V_{c s}\right| f^{K}(0)$ Ratios also useful for various cancellation [CKM, uncertainties]

METHODS: various types of tagging (constrain kinematics)

1) BESIII at threshold: tagging; exclusive D D ${ }^{\text {bar }}$ production
2) B factories: Originally D^{*} tagging, pseudo-mass-difference $\delta \mathrm{M}=\mathrm{M}\left(\pi_{\text {slow }} \mathrm{h}\right.$ l) $-\mathrm{M}(\mathrm{h} \mathrm{l}) \quad$ [like usual $\Delta \mathrm{M}$; broader]
3) B factories, improved : "continuum tagging" charm hadron tag + sets of fragmentation particles First done by Belle for $\mathrm{D}^{0} \rightarrow \pi^{-} \mathbf{l}^{+} v \quad$ PRL 97, 061804 (2006)
$\mathrm{D}^{(*)}{ }_{\operatorname{tag}} X \mathrm{D}^{*{ }_{\text {sig }}} \quad$ where X is a set of fragmentation particles including $\left\{\pi^{+}, \pi^{-}, \pi^{0}\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)\right\}$

Leptonic $\mathrm{D}^{+}{ }_{(\mathrm{s})}$ Decays

Continnum tagging at work in Belle for leptonic D_{s} decay MC studies: also works well for Cabibbo-suppressed mode!

$$
50 \mathrm{ab}^{-1}: \quad 27000 \mathrm{D}_{\mathrm{s}} \rightarrow \mu \nu \quad 1250 \mathrm{D} \rightarrow \mu \nu
$$

D_{s} : can try to trade statistics for better systematic control $\mathrm{D}: 3 \% \mathrm{BF}$ (stat. only) is 1.5% on f_{D} [less than current BESIII]

Belle $0.9 \mathrm{ab}^{-1}$ JHEP 1309, 139 (2013)

Belle result was systematics limited.

Belle II statistics will allow more precise syst. studies \& using the best sub-sample of data

Spectroscopy and Baryons

Open Charm Mesons

-- $\mathrm{D}^{(*)} \mathrm{n} \pi$ systems in B decays [constrain quantum numbers]
-- Continuum
Charm Baryons
-- Searches for new states, new decay modes, ...
-- CP Violation studies
Weakly-decaying baryonic ground-states

$$
\Lambda_{c}+\Xi_{c}+\Xi_{c}{ }^{0} \quad \Omega_{c}{ }_{c}^{0}
$$

\rightarrow Absolute BFs of golden modes
\rightarrow Semileptonic BFs to make contact with theory
BESIII is taking Λ_{c} pair data at threshold data now
Can $50 \mathrm{ab}^{-1}$ confirm, and also extend to the other states?

Belle II Data: Charmonium

$\mathrm{J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ in B-enhanced events

$\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}$ in B-enhanced events

More plots in other FPCP2020 talks form Belle II \rightarrow Look for more updates by ICHEP2020

Charmonium

Lowest-lying states mostly well-covered at BESIII
In B decays, we have constrained kinematics
Polarized X_{cc} in $\mathrm{B} \rightarrow \mathrm{K} X_{\mathrm{cc}}$ can help with spin analysis
Searches for more conventional charmonium
Missing state: $\eta_{2 c}(1 D) J^{P C}=2^{-+}$: Search for in $B \rightarrow K\left(h_{c} \gamma\right)$
Also explore resonances in $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{D}^{\operatorname{bar}(*)} \mathrm{K}^{(*)}$
Two-photon production has some nice features
Also invisible J/ ψ decays, further studies of known states, ...

Double Charmonium

First observed by Belle

 Studied via recoil mass spectrum Interesting re: fragmentation itself + exotic state found in spectrum

Thus far, all double charmonium is a $\mathrm{J}=1$ vs. a $\mathrm{J}=0$ state Is this some general "rule"?
Tests with recoil vs. other states will require high statistics (hadronic decays of $\eta_{c}, \chi_{c 0}$ are tougher than J / ψ dileptons!)

Exotic States: ISR

ISR is a "free energy scan"
It requires high luminosity $\rightarrow 50 \mathrm{ab}^{-1}$ is huge leap forward !
ISR directly accesses Y states with $\mathrm{J}^{\mathrm{PC}}=\mathbf{1}^{--}$
$\mathrm{Y}(4260), \mathrm{Y}(4360), \mathrm{Y}(4630), \mathrm{Y}(4660)$
But also: Belle has seen Z states in Y substructure
$\mathrm{Z}(4020)$ in $\pi \psi(2 \mathrm{~S})$ mass within $\mathrm{Y}(4360) \rightarrow \pi \pi \psi(2 \mathrm{~S})$

Exotic States: B Decays

$\mathrm{B} \rightarrow \mathrm{KX}, \mathrm{K} \mathrm{Z}$ with $\mathbf{X}, \mathrm{Z} \rightarrow \pi \pi \mathrm{J} / \psi, \omega \mathrm{J} / \psi, \phi \mathrm{J} / \psi, \gamma \mathrm{J} / \psi$, $\gamma \psi(2 S), D^{*}{ }^{*}$ bar , $\pi \mathrm{J} / \psi, \pi \psi(2 \mathrm{~S}), \pi \chi_{\mathrm{c} 1}, \gamma \chi_{\mathrm{c} 1}$,

Very rich slate of final states
\rightarrow Good detection of γ and π^{0} is important for many transitions \rightarrow May also find states with η, η^{\prime}, other charmonia, \ldots

Some History:
Belle's 2003
X(3872) discovery
PRL 91, 262001 (2003)

FIG. 2: Signal-band projections of (a) M_{bc}, (b) $M_{\pi^{+} \pi^{-} J / \psi}$ and (c) ΔE for the $X(3872) \rightarrow$ $\pi^{+} \pi^{-} J / \psi$ signal region with the results of the unbinned fit superimposed.

SUMMARY

Very good start to data-taking
Smooth operation and rapid improvements
Broad program complements existing experiments High statistics; good performance for neutrals

Long Program Ahead
Intermediate datasets will be large \& very exciting (some interesting Belle results aren't full stats)

BACKUP

More tables from the Belle II Physics Book [PETP 2019, 123C01 (2019)]

Channel	Observable	Belle/BaBar Measurement		Scaled	
		$\mathcal{L}\left[\mathrm{ab}^{-1}\right]$	Value	$5 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
Leptonic Decays					
$D_{s}^{+} \rightarrow \ell^{+} \nu$	μ^{+}events		492 ± 26	2.7 k	27k
	τ^{+}events	0.913	2217 ± 83	12.1 k	121k
	$f_{D_{s}}$		2.5\%	1.1\%	0.34\%
$D^{+} \rightarrow \ell^{+} \nu$	μ^{+}events	-	-	125	1250
	f_{D}	-	-	6.4\%	2.0\%
Rare and Radiative Decays					
$D^{0} \rightarrow \rho^{0} \gamma$	$A_{C P}$		$+0.056 \pm 0.152 \pm 0.006$	± 0.07	± 0.02
$D^{0} \rightarrow \phi \gamma$	$A_{C P}$	0.943	$-0.094 \pm 0.066 \pm 0.001$	± 0.03	± 0.01
$D^{0} \rightarrow \bar{K}^{* 0} \gamma$	$A_{C P}$		$-0.003 \pm 0.020 \pm 0.000$	± 0.01	± 0.003

