Charm and Charmonium At Belle II Roy Briere

Carnegie Mellon 8 June_{Belle} Hg/Charm/tau factory at e⁺e⁻

KEKB

Outline

Summary

Overview

PLAN:

We're aiming for 50 ab⁻¹: more than 50x Belle dataset
→ Intermediate datasets will already be a big step forward
High statistics should fuel new ideas for analysis
 (topics, techniques, ...)

PROJECTIONS:Prog. Th. Exp. Phys. 2019, 1232C01**Belle II Physics Book**[arXiv 1808.10567]Extensive work by Belle II Collaboration & Theorists*Roadmap for physics with projections, comparisons, ...*A rich program awaits !

PROGRESS:

Intensive work on tuning, shielding, background rates, ... *May 2020: Operating at levels similar to best Belle numbers*

Experimental Context

BESIII: absolute BFs, (semi-)leptonics, charmonia, exotics (XYZ) Statistics limit CPV, rare decays; no boost for time-dependence **LHCb:** excels at CPV, lifetimes, mixing, rare decays, spectroscopy, Some analyses with π^0 & single γ ; recent B_(s) semileptonic (!)

Belle II can generally cover all of the above topics
 LHCb stats are overwhelming for charged final states (incl. K_S)
 BESIII cleanliness very powerful when statistics suffice
 But Belle II can perform world's best analyses in many cases, as well as verify results from others

Open charm mesons, baryons: from continuum (typically) Cross-sections (in nb): 0.6 + 0.6 D*+ $D^{*+} + D^{*0}$ 0.2 D_s 0.2 A_c nb x ab⁻¹ = 10⁹ \rightarrow tens of billions produced in final samples

Charmonium (incl. Exotics) from B decays, ISR, two-photon

Physics Context

Precision Studies of tree-level processes :

Over-constrain CKM:

→ (Semi-)leptonic - CKM matrix; decay constants, form factors Search for anomalous CPV

- \rightarrow T-odd triple products
- → Direct CP asymmetries : especially SCS decays

Suppressed decays (loops) :

FCNC : Radiative modes, di-leptons

Forbidden decays :

Lepton flavor violation, ...

More plots in other FPCP2020 talks form Belle II → Look for more updates by ICHEP2020

Briere - Bellell - FPCP 2020

Vertexing

Detector performance: ~12 μm impact parameter resolution ~40 μm D⁰ flight path resolution

s for L4. 1.3 About twice as good as first B factories [pixels at small radius landius la

Charm Mixing

Belle II Final Reach*

Channel	Observable	Belle/BaBa	Scaled								
		$\mathcal{L} \ [\mathrm{ab}^{-1}]$	Value	$5\mathrm{ab}^{-1}$	$50\mathrm{ab}^{-1}$						
Mixing and Indirect (time-dependent) CP Violation											
$D^0 \to K^+ \pi^-$	$x^{\prime 2} (\%)$	0.076	0.009 ± 0.022	± 0.0075	± 0.0023						
(no CPV)	$y^{\prime}\left(\% ight)$	0.370	0.46 ± 0.34	± 0.11	± 0.035						
(CPV allowed)	q/p	World Avg. $[230]$	$0.89 {}^{+0.08}_{-0.07}$	± 0.20	± 0.05						
	$\phi\left(^{\circ} ight)$	with LHCb	$-12.9^{+9.9}_{-8.7}$	$\pm 16^{\circ}$	$\pm 5.7^{\circ}$						
$D^0 \to K^+ \pi^- \pi^0$	<i>x''</i> (%)	0 384	$2.61^{+0.57}_{-0.68} \pm 0.39$	-	± 0.080						
	<i>y</i> ″ (%)	0.304	$-0.06 {}^{+0.55}_{-0.64} \pm 0.34$	-	± 0.070						
$D^0 \to K^0_S \pi^+ \pi^-$	x(%)	0.921	$0.56 \pm 0.19 {}^{+0.04}_{-0.08} {}^{+0.06}_{-0.08}$	± 0.16	± 0.11						
	$y\left(\% ight)$		$0.30 \pm 0.15 {}^{+0.04}_{-0.05} {}^{+0.03}_{-0.07}$	± 0.10	± 0.05						
	q/p		$0.90 {}^{+0.16}_{-0.15} {}^{+0.05}_{-0.04} {}^{+0.06}_{-0.05}$	± 0.12	± 0.07						
	$\phi\left(^{\circ} ight)$		$-6 \pm 11 \pm 3 {+3 \atop -4}$	± 8	± 4						

Other modes may be interesting for time-dependent analysis $K_{\rm S} \pi^+ \pi^- \pi^0$, ...

* = Belle II Physics Book; PETP 2019, 123C01 (2019)

CP Asymmetries

CPV can be found in mixing, and also in direct asymmetries Many modes exploit Belle II's excellent CsI calorimetry : $D^0 \rightarrow K_S \pi^0, \pi^0 \pi^0$ $D^+ \rightarrow \pi^+ \pi^0$ $D_s^+ \rightarrow \pi^+ \pi^0$ and others: $\eta \& \eta'$ modes, multi-body, ... Neutral D : need D* tag ; small tag asymmetries to study [easier than LHCb production asymmetry]

ALSO: T-odd triple products (four-body final states) Use D Dbar difference to cancel final-state interaction mimicry

CP & Rare Decays

FCNC: Radiative Decays: $D^0 \rightarrow \varrho \gamma$, $\varphi \gamma$, $K^* \gamma$ Single photons = good modes for Belle II ! *Measure CP asymmetries: reach is* $\pm 2\%$, $\pm 1\%$, $\pm 0.3\%$

FCNC: dileptons \rightarrow daunting LHCb competition !

CP Asymmetries

Belle results and final Belle II precision*

	Mode	\mathcal{L} (fb ⁻¹)	A_{CP} (%)	Belle II 50 ab^{-1}
	$D^0 \to K^+ K^-$	976	$-0.32\pm 0.21\pm 0.09$	± 0.03
	$D^0 \to \pi^+ \pi^-$	976	$+0.55\pm 0.36\pm 0.09$	± 0.05
*	$D^0 \to \pi^0 \pi^0$	966	$-0.03\pm 0.64\pm 0.10$	± 0.09
*	$D^0 \to K^0_S \pi^0$	966	$-0.21\pm 0.16\pm 0.07$	± 0.02
	$D^0 \to K^0_S K^0_S$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23
*	$D^0 o K^0_S \eta$	791	$+0.54\pm 0.51\pm 0.16$	± 0.07
*	$D^0 o K^0_S \eta'$	791	$+0.98\pm 0.67\pm 0.14$	± 0.09
*	$D^0 \to \pi^+ \pi^- \pi^0$	532	$+0.43 \pm 1.30$	± 0.13
*	$D^0 \to K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40
	$D^0 \to K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33
	$D^+ \to \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04
*	$D^+ \to \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17
*	$D^+ \to \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
*	$D^+ o \eta' \pi^+$	791	$-0.12\pm 1.12\pm 0.17$	± 0.14
١	$D^+ \to K^0_S \pi^+$	977	$-0.36\pm 0.09\pm 0.07$	± 0.02
	$D^+ \to K^0_S K^+$	977	$-0.25\pm 0.28\pm 0.14$	± 0.04
	$D_s^+ \to K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29
	$D_s^+ \to K_S^0 K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05

* 🕾 🗷 🕫 Belle II (neutrals)

Leptonic and Semileptonic

PHYSICS: Precise decay constants & form factors Test Lattice QCD $|V_{cd}|f_D |V_{cs}|f_{Ds} |V_{cd}|f^{\pi}(0) |V_{cs}|f^{K}(0)$ *Ratios also useful for various cancellation* [*CKM, uncertainties*]

METHODS: various types of tagging (constrain kinematics) 1) *BESIII at threshold*: tagging; exclusive D D^{bar} production

2) *B factories:* Originally D* tagging, pseudo-mass-difference $\delta M = M(\pi_{slow} h l) - M(h l)$ [like usual ΔM ; broader]

3) *B factories, improved* : "continuum tagging" charm hadron tag + sets of fragmentation particles **First done by Belle for D⁰** $\rightarrow \pi^- l^+ \nu$ **PRL 97, 061804 (2006)** $D^{(*)}_{tag} X D^{*-}_{sig}$ where X is a set of fragmentation particles including { π^+ , π^- , π^0 (K⁺K⁻) }

Leptonic D⁺_(s) **Decays**

Continnum tagging at work in Belle for leptonic D_s decay MC studies: also works well for Cabibbo-suppressed mode ! 50 ab^{-1} : $27000 D_s \rightarrow \mu \nu$ 1250 $D \rightarrow \mu \nu$

 D_s : can try to trade statistics for better systematic control

D : 3% BF (stat. only) is 1.5 % on f_D [less than current BESIII]

Belle result was systematics limited.

Belle II statistics will allow more precise syst. studies & using the best sub-sample of data

Spectroscopy and Baryons

Open Charm Mesons

-- D^(*) nπ systems in B decays [constrain quantum numbers]
 -- Continuum

Charm Baryons

-- Searches for new states, new decay modes, ...

-- CP Violation studies

Weakly-decaying baryonic ground-states Λ_c^+ Ξ_c^+ Ξ_c^0 Ω_c^0

→ Absolute BFs of golden modes → Semileptonic BFs to make contact with theory BESIII is taking Λ_c pair data at threshold data now Can 50 ab⁻¹ confirm, and also extend to the other states ?

: Charmonium

$J/\psi \rightarrow e^+ e^$ in B-enhanced events

$J/\psi \rightarrow \mu^+ \mu^$ in B-enhanced events

More plots in other FPCP2020 talks form Belle II → Look for more updates by ICHEP2020

Briere - Bellell - FPCP 2020

Charmonium

Lowest-lying states mostly well-covered at BESIII In B decays, we have constrained kinematics Polarized X_{cc} in $B \rightarrow K X_{cc}$ can help with spin analysis

Searches for more conventional charmonium Missing state: $\eta_{2c}(1D)$ J^{PC} = 2⁻⁺ : Search for in B \rightarrow K ($h_c \gamma$) Also explore resonances in B \rightarrow D^(*) D^{bar(*)} K^(*)

Two-photon production has some nice features

Also invisible J/ ψ decays, further studies of known states, ...

Double Charmonium

Thus far, all double charmonium is a J=1 vs. a J = 0 state Is this some general "rule"? Tests with recoil vs. other states will require high statistics (hadronic decays of η_c , χ_{c0} are tougher than J/ ψ dileptons !)

Exotic_{\$}**States: ISR**

5 MeV/c⁴ ISR is a "free energy scan" It requires high luminos ity . 50 ab⁻¹ is huge leap forward

ISR directly accesses Y states with IPC = $M[\pi^{\pm}\psi(2S)]$ (GeV/c²) Y(4260), Y(4360), Y(4630), Y(4660) But also: Belle has seen Z states in Y *substructure*

Z(3900) in π J/ ψ mass within Y(4260) $\rightarrow \pi \pi J/\psi$

Z(4020) in $\pi \psi$ (2S) mass within Y(4360) $\rightarrow \pi \pi \psi(2S)$

(d)

Exotic States: B Decays

$$\begin{split} \mathbf{B} \rightarrow \mathbf{K} \mathbf{X}, \mathbf{K} \mathbf{Z} \quad \text{with } \mathbf{X}, \mathbf{Z} \rightarrow & \pi \pi J/\psi, \ \omega J/\psi, \ \phi J/\psi, \ \gamma J/\psi, \\ & \gamma \psi(2\mathbf{S}), \ \mathbf{D} \ \mathbf{D}^{*\text{bar}}, \\ & \pi J/\psi, \ \pi \psi(2\mathbf{S}), \ \pi \chi_{c1}, \ \gamma \chi_{c1}, \end{split}$$

Very rich slate of final states

→ Good detection of γ and π^0 is important for many transitions → May also find states with η , η' , other charmonia, ...

FIG. 2: Signal-band projections of (a) $M_{\rm bc}$, (b) $M_{\pi^+\pi^- J/\psi}$ and (c) ΔE for the $X(3872) \rightarrow \pi^+\pi^- J/\psi$ signal region with the results of the unbinned fit superimposed.

SUMMARY

Very good start to data-taking Smooth operation and rapid improvements

Broad program complements existing experiments High statistics; good performance for neutrals

Long Program Ahead

Intermediate datasets will be large & very exciting (some interesting Belle results aren't full stats)

BACKUP

More tables from the Belle II Physics Book [PETP 2019, 123C01 (2019)]

Channel	Observable	Belle/BaBar Measurement		Scaled					
		$\mathcal{L} \; [\mathrm{ab}^{-1}]$	Value	$5\mathrm{ab}^{-1}$	$50\mathrm{ab}^{-1}$				
Leptonic Decays									
	μ^+ events		492 ± 26	2.7k	27k				
$D_s^+ \to \ell^+ \nu$	τ^+ events	0.913	2217 ± 83	12.1k	121k				
	${f_{{D}_s}}$		2.5%	1.1%	0.34%				
$D^+ \setminus \ell^+ \mu$	μ^+ events	-	-	125	1250				
$D^+ \rightarrow \ell^+ \nu$	f_D	-	-	6.4%	2.0%				
Rare and Radiative Decays									
$D^0 o ho^0 \gamma$	A_{CP}		$+0.056\pm 0.152\pm 0.006$	± 0.07	± 0.02				
$D^0 o \phi \gamma$	A_{CP}	0.943	$-0.094 \pm 0.066 \pm 0.001$	± 0.03	± 0.01				
$D^0 \to \overline{K}^{*0} \gamma$	A_{CP}		$-0.003 \pm 0.020 \pm 0.000$	± 0.01	± 0.003				