

Belle II highlights on first B-physics results

Fernando Abudinén on behalf of Belle II

FPCP conference June 8, 2020

3 Charmless *B*-decays

4 η and η' mesons

Istituto Nazionale di Fisica Nucleare Sezione di Trieste

The SM: extremely successful but not the full story ... \Rightarrow Flavor might bring us to the next page.

Some of the hot topics on the menu:

- CKM angles and coefficients M. Merola
- Lepton flavor violation $(au o \mu \gamma, ...)$ M. Hernandez
- Charm and charmonium (X(3872), ...), R. Briere
- New physics in penguins $(B o K^*
 u ar{
 u}, ...)$ S. Halder
- Full event reco. for $B \to X + \text{missing energy}$, S. Stefkova
- ⇒ Belle II expected to lead where precise knowledge on initial state and low backgrounds are key.

Now: B-physics highlights of 2019 Belle II data.

Belle II

Improved vertexing, tracking and particle-identification (PID) detectors.

Challenges: increased backgrounds, higher trigger rates.

High-performance in signal B-decay and vertex reconstruction are key.

Benchmarks vertex reconstruction and time-resolution models.

- Reconstruct $B^0 \to D^{(*)-}\pi^+(\rho^+)$ decays.
- Separate signal from $B\overline{B}$ and continuum backgrounds performing a 2D fit to the ΔE and $M_{\rm bc}$ distributions.

- $\mathcal{R}(\Delta t \Delta t_{\mathrm{true}})$ modeled with 3 Gaussian functions:
- \Rightarrow Relative fractions, shifts and width scaling factors from simulation.
- \Rightarrow Global shift $\mu_{\Delta t}$ and width $\sigma_{\Delta t}$ from data.

	Data	MC	
$\mu_{\Delta t} \left[ps \right]$	$\textbf{-}0.03\pm0.06$	-0.09 ± 0.02	
$\sigma_{\Delta t} \left[ps \right]$	0.56 ± 0.18	0.44 ± 0.09	

 $B\overline{B}$: τ_{eff} from fit to MC, same resolution as signal.

Belle II

$$\mathcal{P}^{\mathsf{Obs}}(\Delta t, \tau_{\mathbf{B}^0}) \propto e^{\frac{-|\Delta t|}{\tau_{\mathbf{B}^0}}} \otimes \ \mathcal{R}(\Delta t - \Delta t_{\mathrm{true}})$$

Full fit to Δt

Systematic uno	cties.[ps]
Fit bias	0.05
$ au_{\mathrm{eff}}$	0.01
Calibration	0.03

$$au_{B^0} = 1.48 \pm 0.28 \pm 0.06 \, \mathrm{ps}$$

 \Rightarrow compatible with world average $1.519\pm0.004\,\mathrm{ps.}$

BELLE2-CONF-PH-2020-003 [arXiv:2005.07507]

- \Rightarrow Preliminary resolution-model explored.
- \Rightarrow Good understanding of basic ingredients for Δt -dep. analyses.

5.28

5.3 M_{bc} [GeV/c²]

24 5.26

Good data/MC agreement.

- Key for ϕ_2 and isospin sum rules.
- Sensitive to new loop contributions.
- Suppressed with $\mathcal{B} \lesssim 10^{-5}$.

⇒ Impose challenges on: particle identification, reconstruction of neutral particles, and suppression of large backgrounds.

Belle II has reconstructed 400 charmless *B* decays.

BELLE2-CONF-PH-2020-001 [arXiv:2005.13559]

 $\Rightarrow \approx 2 \times$ yield/fb wrt. BEAUTY 2019.

Good perf. on π^0 reco.

 \Rightarrow

 \Rightarrow Clean $K_{\rm S}^0$ reconstruction.

 \Rightarrow Good agreement between data and simulation.

 $B^0 \to \eta' \kappa^{(*)0}$, $\eta \kappa^{(*)0}$: highly sensitive to new $b \to q\bar{q}s$ loops. \Rightarrow First milestone reached by reconstructing η and η' mesons.

- Good performance confirmed by benchmarking to well-known physics.
- Overall good agreement between data and simulation proves good understanding of detector and tools.
- Performance already comparable with Belle.

- \Rightarrow Updates in progress.
- \Rightarrow Stay tuned!

 \Rightarrow Belle II on track to probe non-standard model physics in *B* dynamics.

Backup:

	Belle			
	Belle II		PRD.87.031103	
Decay	$Yield/fb^{-1}$	Purity	${\sf Yield}/{\sf fb}^{-1}$	Purity
$B^0 \to K^+ \pi^-$	9.1 ± 1.3	≈ 10	10.6 ± 0.18	≈ 5
$B^0 \to \pi^+ \pi^-$	1.8 ± 0.6	≈ 5.5	2.96 ± 0.12	≈ 2.4
$B^+ o K^0_{ m S} \pi^+$	2.1 ± 0.6	≈ 10	4.5 ± 0.1	≈ 12
$B^+ \to K^+ \pi^0$	3.1 ± 0.9	≈ 3.6	5.2 ± 0.13	≈ 3.5

 $\Rightarrow\,$ Performance qualitatively comparable with Belle.

 $B^0 \rightarrow \eta' \kappa^{(*)0}$, $\eta \kappa^{(*)0}$: highly sensitive to new $b \rightarrow q\bar{q}s$ loops. \Rightarrow First milestone reached by reconstructing η and η' mesons.

 $B^0 \to \eta' \kappa^{(*)0}$, $\eta \kappa^{(*)0}$: highly sensitive to new $b \to q\bar{q}s$ loops. \Rightarrow First milestone reached by reconstructing η and η' mesons.

