Belle II Status and Prospects

Phillip Urquijo, The University of Melbourne
Flavour Physics and CP Violation 2020
Belle II detector

Belle II @ Super-KEKB

Intensity frontier flavour-factory experiment, Successor to Belle @KEKB (1999-2010)

- Belle II @ Super-KEKB
- Intensity frontier flavour-factory experiment
- Successor to Belle @KEKB (1999-2010)
- 7 GeV e⁻, 4 GeV e⁺
- E_{CM} $Y(4S) = 10.58$ GeV + scans
- $Y(4S) \rightarrow B$ anti-B
- $B +$ Charm + $\tau + Y$ factory
- ~1050 researchers (355 grad students) from 23 countries.
- Inclusive:
 - KEDR
 - BES
- Exclusive:
 - Mark-I
 - Mark-I + LGW
 - Mark-II
 - PLUTO
 - Crystal Ball
 - BES
 - KEDR
- J/ψ, $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$
- Υ factory

$R = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$

Note:
- CLEO data above $\Upsilon(4S)$ were not fully corrected for radiative effects, and we retain them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and the details of the R ratio extraction from them can be found in [100]. The computer-readable data are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2019.)

9.5 10 10.5 11
- MD-1
- ARGUS
- CLEO
- CUSB
- DASP
- DHHM
- MD-1
- Crystal Ball
- CLEO II
- CUSB
- DASP
- LENA

PDG2019

Υ工厂区域

$Y(1S)$, $Y(2S)$, $Y(3S)$, $Y(4S)$, $Y(5S)$, $Y(6S)$

off-resonance ($\Upsilon(4S)$-60 MeV): 10.52 GeV

BB threshold: 10.56 GeV

$\Upsilon(4S)$: 10.58 GeV
Belle II Flavour Program

- Belle II plans to collect 50 ab\(^{-1}\) of collisions near Y(4S)
 - a (Super) B-factory (~1.1 \times 10^9\ BB pairs per ab\(^{-1}\))
 - a (Super) charm factory (~1.3 \times 10^9\ cc pairs per ab\(^{-1}\))
 - a (Super) τ factory (~0.9 \times 10^9\ ττ pairs per ab\(^{-1}\))

- Flavour program at Belle II
 - CKM precision metrology
 - Flavour BSM analyses with good “detection universality” (e.g. leptons). Ready to tackle “anomalies”.
 - Dark, missing energy: hidden portals, axiflavons etc.
 - Important, unexplained hierarchy among 10 of 19 params of SM m\(\nu\)=0
 - Mass (6 params, small ratios of scales)
 - CP violation (4 params, strong hierarchy between generations)
 - With phenomenological consequences for quark flavour dynamics
CKM and CPV SM Metrology: Belle II core program

\[B \rightarrow \pi \pi, \rho \rho \quad \Phi_2 \quad \text{via Form factor / OPE} \]

\[B \rightarrow D l \nu / b \rightarrow c l \nu \quad \Phi_3 \quad \text{via Form factor / OPE} \]

\[B \rightarrow \pi l \nu / b \rightarrow u l \nu \quad \Phi_1 \quad \text{via Decay constant f}_M \]

\[B_s \rightarrow J/\psi \Phi \quad \beta_s \quad \varepsilon_K \quad (\rho, \eta) \quad \text{via B}_K \]

\[K \rightarrow \pi \nu \text{ anti-}\nu \quad \rho, \eta \quad \Delta m_d, \Delta m_s \quad \text{via Bag factor B}_B \]

\[B(s) \rightarrow \mu^+ \mu^- \quad |V_{t[d,s]}| \quad \text{via Decay constant f}_B \]

\[\text{Observables with very different properties} \]

Tree: e.g., \(|V_{ub}|, \Phi_3\)

Loop: e.g., \(\Delta m_d, \Delta m_s, \varepsilon_K, \sin(2\beta)\)

CP-conserving: e.g., \(|V_{ub}|, \Delta m_d, \Delta m_s\)

CP-violating: e.g., \(\gamma, \varepsilon_K, \sin(2\beta)\)

Exp. uncs.: e.g., \(\alpha, \sin(2\beta), \gamma\)

Syst. uncs.: e.g., \(|V_{ub}|, |V_{cb}|, \varepsilon_K, \Delta m_d, \Delta m_s\)
CKM and CPV SM Metrology: Belle II core program

\[|V_{cb}| \text{ via Form factor / OPE} \]
\[|V_{ub}| \text{ via Form factor / OPE} \]
\[|V_{UD}| \text{ via Decay constant } f_M \]
\[(\rho, \eta) \text{ via } B_K \]
\[|V_{tb} V_{t[d,s]}| \text{ via Bag factor } B_B \]
\[|V_{t[d,s]}| \text{ via Decay constant } f_B \]

Observables with very different properties

Tree: e.g., \(|V_{ub}|\), \(\Phi_3\)

Loop: e.g., \(\Delta m_d, \Delta m_s, \varkappa, \sin(2\beta)\)

CP-conserving: e.g., \(|V_{ub}|, \Delta m_d, \Delta m_s\)

CP-violating: e.g., \(\gamma, \varkappa, \sin(2\beta)\)

Exp. uncs.: e.g., \(\alpha, \sin(2\beta), \gamma\)

Syst. uncs.: e.g., \(|V_{ub}|, |V_{cb}|, \varkappa, \Delta m_d, \Delta m_s\)
CKM and CPV SM Metrology: Belle II core program

$B \rightarrow \pi \pi, \rho \rho$

$B \rightarrow D^(*) K^(*)$

$B \rightarrow J/\psi K_s$

$B_s \rightarrow J/\psi \Phi$

$K \rightarrow \pi \nu \text{anti-}\nu$

$B_s \rightarrow \mu^+ \mu^-$

$B \rightarrow D \ell / b \rightarrow c \ell / b$

$B \rightarrow D_0 \ell / b \rightarrow c \ell / b$

$B \rightarrow D_0^0 \ell / b \rightarrow c \ell / b$

$B \rightarrow J/\psi K\beta\epsilon_K$

$B_s \rightarrow J/\psi K\beta\epsilon_K$
SuperKEKB

Achievements

<table>
<thead>
<tr>
<th></th>
<th>KEKB</th>
<th>SuperKEKB</th>
<th>Achievements</th>
</tr>
</thead>
<tbody>
<tr>
<td>β^*_{γ}(mm)</td>
<td>5.9/5.9</td>
<td>0.3/0.27</td>
<td>1/1</td>
</tr>
<tr>
<td>I_{beam}(A)</td>
<td>1.19/1.65</td>
<td>2.6/3.6</td>
<td>0.70/0.88</td>
</tr>
<tr>
<td>L(cm$^{-2}$s$^{-1}$)</td>
<td>2.11x1034</td>
<td>80x1034</td>
<td>1.88x1034</td>
</tr>
</tbody>
</table>

1) New e$^+$ damping ring (commissioned 2018).
2) New 3 km e$^+$ ring vacuum chamber (commissioned in 2016). Optics and vacuum scrubbing in 2018.
3) New superconducting final focus (commissioned 2018).

20× smaller beam spot ($\sigma_y=50$ nm) but generally higher beam background

SuperKEKB, 1/6/2020

SuperKEKB Accelerator

Damping ring: reduces the beam emittance

New RF system: increases the beam current

New focusing magnets: reduces the beam size

KEKB \rightarrow SuperKEKB

Nano-beam scheme

1 μm

400 μm

83 mrad

10 mm

Reduces the beam size in the interaction region to 50 nm.
Belle II Detector, 2020 Full Operations

K-Long and muon detector:
Resistive Plate Chambers (barrel outer layers)
Scintillator + WLSF + SiPM’s (end-caps, inner 2 barrel layers)

EM Calorimeter:
CsI(Tl), waveform sampling (barrel + endcap)

Particle Identification
iTOP detector system (barrel)
Prox. focusing Aerogel RICH (fwd)

Central Drift Chamber
He(50%):C$_2$H$_6$(50%), small cells, long lever arm, fast electronics (Core element)

Vertex Detector
1→2 layers DEPFET + 4 layers DSSD

Beryllium beam pipe
2cm diameter

~90% data taking efficiency

VXD:
Another key element is now ready in global cosmic since Jan 2019
VXD installed to Belle II (Nov 2018)

PXD: L1+1/6 of L2 (rest will be added in 2020)

One half of VXD

Large improvement in vertex resolution
~90% data taking efficiency
Nano-beams and the vertex detector

SuperKEKB

The vertex distribution is constrained in the nano-beam scheme.

\[\sigma = 550 \, \mu m \]

Effective bunch length reduced x 1/10
And vertex resolution 2x better than Belle

Belle II

Belle II MC Vs Belle

D^0 lifetime:
Accepted value 410 fs

\[\tau_{D^0} = 370 \pm 40 (stat) \, fs \]

Talk by R. Briere

Phillip URQUIJO
Tracking - tag and probe

$$\text{ee} \rightarrow \tau\tau(\gamma)$$

Used for early trigger & track efficiency measurements. Ratio of 3 and 4 track events, with e or µ tag.

More techniques being explored with > 10 fb⁻¹ datasets.

$$\epsilon_{\text{track}} \cdot A = \frac{N_4}{N_3 + N_4}$$

$$\delta = 1 - \frac{\epsilon_{\text{Data}}}{\epsilon_{\text{MC}}}$$

Talk by M. Villanueva

Systematic error on tracking based on averaging over subsets.

$$\delta_{\text{overall}} = 0.19 \pm 0.14 \text{ (stat)}\%$$
Hadron Identification

- dE/dx (CDC, SVD) & Time of propagation Cherenkov patterns (TOP), and Cherenkov rings (ARICH).
- Performance with D^* sample.
- FCNC $b \rightarrow d$ and $b \rightarrow s$ transitions are key are for flavour studies, requiring better K/π ID performance than Belle.

Belle II CDC dE/dx
2018 Preliminary

Kinematically identified kaon from D^* in TOP; x vs t pattern (mapping of Cherenkov ring)

$D^* \rightarrow D^0\pi^+$; $D^0 \rightarrow K^{-}\pi^+$

Belle II 2019 Preliminary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p (GeV/c)</td>
<td>1.73</td>
</tr>
<tr>
<td>β</td>
<td>0.84</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.94</td>
</tr>
<tr>
<td>K decay</td>
<td>$\pi^-\pi^+$</td>
</tr>
<tr>
<td>π decay</td>
<td>$\pi^0\pi^0$</td>
</tr>
<tr>
<td>Pixel column</td>
<td>15</td>
</tr>
<tr>
<td>Hit time [ns]</td>
<td>20</td>
</tr>
<tr>
<td>z</td>
<td>-69.1 cm</td>
</tr>
<tr>
<td>dip</td>
<td>8.5°</td>
</tr>
<tr>
<td>Δ</td>
<td>-21.5°</td>
</tr>
<tr>
<td>Prism side</td>
<td>Mirror side</td>
</tr>
</tbody>
</table>

Belle II 2020 Preliminary

D^* kinematically tagged kaon

- p = 1.73 GeV/c
- β = 0.84
- K efficiency (data)
- Kaon PDF
- log $L(K) = 236.38$

Belle II 2018 Preliminary

- p = 1.73 GeV/c
- β = 0.84
- K efficiency (MC)
- Kaon PDF
- log $L(K) = 257.51$

Pion PDF X

Kaon PDF ✓
Lepton Reconstruction & Identification

- Targeting precision in LFUV tests. Challenge: $B \rightarrow \tau \rightarrow l$ have $<p> \sim 500$ MeV/c.
- Driven by ECL, KLM, + dE/dx (CDC, SVD)
- μ Little to no radiation (heavy), Stable within Belle II but need > 700 MeV/c to reach KLM.
- e Final state radiation, Brems. in material (less material than LHC detectors).
- Good universality between e and μ: efficiencies and resolution (after Brems. recovery).

![Diagram of Belle II and Belle-II simulation](image)

FIG. 18

$\int L \, dt = 5.2$ fb$^{-1}$

$N_{ee} = 3913 \pm 82$

$N_{\mu\mu} = 4053 \pm 75$

FIG. 19

Lepton identification e vs \bar{e} in barrel region. The cut on the classifier is arbitrarily chosen to result in a flat 95% average efficiency for correctly identifying e with \bar{e} in each of the three momentum categories. The mis-ID probability as a function of δ difference in probability of the BDT method with respect to the likelihood method.

M. Milesi, CHEP 2019

Fakes near 1% or lower.

Bellev II 2019 Preliminary

 Phillip URQUIJO
Stable photon efficiencies, resolution and pointing information for invariant masses from the calorimeter.

- Efficiencies: $ee \rightarrow \mu \mu \gamma$
- Resolution: π^0, η, $\mu \mu \gamma$
- Calibration and material effects under constant development and improvement.
- K_L-ID under development too.

$\pi^0 \rightarrow \gamma \gamma$

$\eta \rightarrow \gamma \gamma$

$\eta \rightarrow \pi \pi \eta(\gamma \gamma)$

Photon Efficiencies

Single Photon Lines
Counting

Luminosity

Measured with $\text{ee} \rightarrow \text{ee}(\gamma)$, $\gamma\gamma$ in ECL

Integrated luminosity in phase 2

$= 496.3 \pm 0.3 \pm 3.0 \text{ pb}^{-1}$

→ better than 1% precision.

Belle II

![Belle II Data, ee, γγ, Bkg, Tot](image)

ECL clusters

$\left| \phi_{cm}^{\max1} - \phi_{cm}^{\max2} \right| - 180^\circ$ [degrees]

B-counting

We are on the $\Upsilon(4S)$ resonance and recording B-anti B pairs with ~99% efficiency. c.f. $\sigma(\Upsilon(4S))$-1.05 nb at 10.58 GeV

+ ~6 fb\(^{-1}\) of data taken 60 MeV below $\Upsilon(4S)$ to date.
2020 — Towards the first flavour publications

- (59) fb\(^{-1}\) on disk, ready to reach several hundred by the end of the year.
- Already 1 publication on dark sector searches - more soon to come.
- Flavour publications likely to start with 2019+2020 data - **several ideas for new \(\tau\) results.**

Talk by M. Villanueva

2019: 10 fb\(^{-1}\) (November)

2020: ~80 fb\(^{-1}\) (End of run in June)

2020: ~200-400 fb\(^{-1}\) (December, **Babar 500 fb\(^{-1}\)**)

Run resumes October.

2021-2022: ~1 ab\(^{-1}\) (**Belle**) [arXiv: 1808.10567 / PTEP]

2023 5 ab\(^{-1}\) B2TiP Milestone
Search for an invisibly decaying Z'

- Search for vector boson Z' that couples to 2nd and 3rd generation only.
- $ee \rightarrow \mu\mu Z'$ or $e\mu Z'$
- Invisible decays to Dark Matter or neutrinos.
- Possible explanation for g-2 anomaly.
- First physics publication.

limits on the Z coupling constant at the level of 5×10^{-2}–1 for $M(Z') \leq 6$ GeV/c^2

Belle II

Phillip URQUIJO
Dark Sector - results to come

- Vector portal \(e F_{\gamma}^\mu v F_{\gamma}^\nu \mu (\text{dark photon } A') , \sum_i \theta g' I \gamma' Z' \mu ! (\text{dark } Z') \)
- Axion portal \(\frac{G_{agg}}{4} a G_\mu \gamma v + \frac{G_{agg}}{4} a F_{\gamma}^\mu v (\text{axion, alps}) \)
- Scalar portal \(\lambda H^2 S^2 + \mu H^2 S (\text{dark Higgs}) \)

Often with low multiplicity signatures, not explored at Belle. But the trigger/data volume is a challenge.

O(10 nb) acceptance / suppress QED events (100s nb), keeping B & D > 99% efficiency.

More to come, e.g.

- \(e^+ e^- \rightarrow \gamma X \)
- \(e^+ e^- \rightarrow \gamma \text{ ALP } (\rightarrow \gamma \gamma) \)
- \(e^+ e^- \rightarrow \gamma A' (\text{dark photon}) \)

Dark \(Z' \), Magn. Monopoles

Can also access through heavy flavour transitions.

Belle II

Phillip URQUIJO 15
Time dependent CP Violation / Overview

- Φ_1 & New physics TDCPV in $b \to qqs$ transitions ($q = u,d,s$) are major targets
- Δt resolution ~ 0.77 ps (30% to a factor 2 better than Belle);
- **PXD + nano-beam spot in Belle II, +30% K_S acceptance**
- Effective flavour tagging efficiency $\sim 36\%$ (MC estimate, 30\% at Belle)

<table>
<thead>
<tr>
<th>Channel</th>
<th>WA (2017)</th>
<th>5 ab$^{-1}$</th>
<th>50 ab$^{-1}$</th>
<th>PTEP 2019 (2019) 12, 123C01</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi K^0$</td>
<td>0.022</td>
<td>0.012</td>
<td>0.0052</td>
<td>SM</td>
</tr>
<tr>
<td>ϕK^0</td>
<td>0.12</td>
<td>0.048</td>
<td>0.020</td>
<td>NP</td>
</tr>
<tr>
<td>$\eta' K^0$</td>
<td>0.06</td>
<td>0.032</td>
<td>0.015</td>
<td>NP</td>
</tr>
<tr>
<td>ωK_S^0</td>
<td>0.21</td>
<td>0.08</td>
<td>0.024</td>
<td>NP</td>
</tr>
<tr>
<td>$K_S^0 \pi^0 \gamma$</td>
<td>0.20</td>
<td>0.10</td>
<td>0.031</td>
<td>NP</td>
</tr>
<tr>
<td>$K_S^0 \pi^0$</td>
<td>0.17</td>
<td>0.09</td>
<td>0.028</td>
<td>NP</td>
</tr>
</tbody>
</table>

Belle II

Phillip URQUIJO

Constrains penguin pollution

Expect Belle II to dominate all these channels within 2 years
- Good understanding of basic tools and performance for TDCPV.
- B-decay vertices reconstructed using VXD hit information.
- ~1 ps Δt resolution achieved - dominated by tag-side.

Systematic Errors [ps]

<table>
<thead>
<tr>
<th>Source</th>
<th>[ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit bias</td>
<td>0.05</td>
</tr>
<tr>
<td>τ_{eff}</td>
<td>0.01</td>
</tr>
<tr>
<td>Calibration</td>
<td>0.03</td>
</tr>
</tbody>
</table>

- $\tau_{B^0} = 1.48 \pm 0.28 \pm 0.06$ ps compatible with world average 1.519 ± 0.004 ps
B mixing

- Fraction \(N_{OF}/(N_{OF}+N_{SF}) \) calculated for each \(\Delta t \) bin and compared with MC-expected value \(P_{OF}(\Delta t) \times R(\Delta t) \)
- \(P_{OF}(\Delta t) = [1 - \cos(\Delta m t)] \)
- Flavour specific final states: \(|+\pm|, |\pm| \)

\[
\chi_d = (17.2 \pm 5.6)\% \quad (WA = 18.6)\%
\]
B reconstruction towards \(\Phi_1 \)

- \(\sin 2\Phi_1 \) from \(B \rightarrow ccK^0 \) - a few x 1000 recorded by Belle II to date.
- With the full dataset “systematic” uncertainties will be larger, but data driven. Balance stat-power with good vertex fitted events.
- Searches for NP in \(B \rightarrow \eta'K_S \) etc. are stat limited through to 50 ab\(^{-1}\).
- For theory: often neglected the contributions from suppressed amplitudes carrying a different phase - need to work together on modes like \(B \rightarrow J/\psi \pi^0 \).

Preliminary Belle II

\[\int L = 8.7 \text{ fb}^{-1} \]

<table>
<thead>
<tr>
<th>Mode</th>
<th>Signal</th>
<th>Background</th>
<th>Expected signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^0 \rightarrow J/\psi K_S^0) (J/\psi \rightarrow e^+e^-)</td>
<td>38.4 (\pm 6.3)</td>
<td>1.9 (\pm 0.5)</td>
<td>38.5 (\pm 3.1)</td>
</tr>
<tr>
<td>(B^0 \rightarrow J/\psi K_S^0) (J/\psi \rightarrow \mu^+\mu^-)</td>
<td>74.8 (\pm 8.5)</td>
<td>0.5 (\pm 0.2)</td>
<td>64.6 (\pm 4.5)</td>
</tr>
<tr>
<td>(B^0 \rightarrow J/\psi K_S^0) (J/\psi \rightarrow \ell^+\ell^-)</td>
<td>113.9 (\pm 11.1)</td>
<td>1.3 (\pm 0.3)</td>
<td>103.1 (\pm 5.5)</td>
</tr>
</tbody>
</table>

Philipp URQUIJO

Talk by F. Abudinen

<table>
<thead>
<tr>
<th>(\Phi_1)</th>
<th>Current</th>
<th>50 ab(^{-1}) projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>0.7(^\circ)</td>
<td>0.2(^\circ)</td>
</tr>
<tr>
<td>Theoretical - QCDF & pQCD</td>
<td>0.1(^\circ)</td>
<td>0.1(^\circ)</td>
</tr>
<tr>
<td>Theoretical - SU(3)</td>
<td>1.7(^\circ)</td>
<td>0.8(^\circ)</td>
</tr>
</tbody>
</table>

Preliminary Belle II

\[\int L = 50 \text{ ab}^{-1} \]
B reconstruction towards Φ_2 & Direct CPV

Complement of B→Kπ isospin rotations required to test for new sources of CPV, $I_{K\pi} = 0$ in SM

<table>
<thead>
<tr>
<th>Decay</th>
<th>MC Yield</th>
<th>Data Yield</th>
<th>MC Yield/fb⁻¹</th>
<th>Data Yield/fb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to K^+\pi^-$</td>
<td>371 ± 24</td>
<td>79 ± 11</td>
<td>7.4 ± 0.5</td>
<td>9.1 ± 1.3</td>
</tr>
<tr>
<td>$B^0 \to \pi^+\pi^-$</td>
<td>78 ± 11</td>
<td>16 ± 5</td>
<td>1.6 ± 0.2</td>
<td>1.8 ± 0.6</td>
</tr>
<tr>
<td>$B^+ \to K^0\pi^+$</td>
<td>83 ± 10</td>
<td>18 ± 5</td>
<td>1.7 ± 0.2</td>
<td>2.1 ± 0.6</td>
</tr>
<tr>
<td>$B^+ \to K^+\pi^0$</td>
<td>191 ± 20</td>
<td>27 ± 8</td>
<td>3.8 ± 0.4</td>
<td>3.1 ± 0.9</td>
</tr>
<tr>
<td>$B^+ \to K^+K^+K^-$</td>
<td>559 ± 28</td>
<td>92 ± 12</td>
<td>11.2 ± 0.6</td>
<td>10.6 ± 1.4</td>
</tr>
<tr>
<td>$B^+ \to K^+\pi^+\pi^-$</td>
<td>1008 ± 44</td>
<td>160 ± 19</td>
<td>20.2 ± 0.9</td>
<td>18.4 ± 2.2</td>
</tr>
</tbody>
</table>

$\int L \, dt = 8.7 \, fb^{-1}$

$\int L \, dt = 50 \, fb^{-1}$
B reconstruction towards Φ_3

• Demonstration of Belle II high momentum PID on a decay mode to be used for future determinations of the UT angle Φ_3. Improved ΔE resolution in Belle II - better DK/Dπ separation than Belle.

• Ultimate reach of $\sim 1.5^\circ$ precision on Φ_3 predominantly from GGSZ $D \to K_S^0\pi^+\pi^-$.

• Requires us to use neutral modes with significant BRs: CP even ($\pi^0\pi^0$, $K_L^0\pi^0$, $K_S^0\pi^0\pi^0$...), CP odd ($K_S^0K_S^0K_L^0$, $\eta\pi^0\pi^0$, ...), Self-conjugate ($K_L\pi\pi$, K_LKK...).

Talk by M. Merola
B → D(*) τ⁻ ν analysis / Converted Belle→Belle II Data

- Semileptonic tag / FEI BDT, B→D τ ν and B→D* τ ν Simultaneously
- Employed Belle II analysis framework. Stat. limited!

\[R(D) = 0.307 \pm 0.037 \pm 0.016 \]
\[R(D^*) = 0.283 \pm 0.018 \pm 0.014 \]

2D fit \(E_{\text{ECL}} + \text{BDT}_{XGBoost} \) [\(M^2_{\text{miss}}, E_{\text{vis}}, \cos \theta_{B-D^*} \)]
B → D*(*)τ−ν analysis / Converted Belle→Belle II Data

- Semileptonic tag / FEI BDT, B→D τ ν and B→D* τ ν Simultaneously
- Employed Belle II analysis framework. Stat. limited!

\[\mathcal{R}(D) = 0.307 \pm 0.037 \pm 0.016 \]
\[\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014 \]
Untagged $B \rightarrow D^* 1 \nu$

- Signals for $B \rightarrow D^+ l^{-} \nu$, $D^* \rightarrow D^{0} \pi^{+}$ using $\cos \theta_{BD^{*}}$
- Clear signals are found in both e and μ modes.
- BRs consistent with WA. Performance corrections applied.

$$B(\bar{B}^{0} \rightarrow D^{*+} e^{-} \bar{\nu}_{e}) = (4.42 \pm 0.14 ({\text{stat}}) \pm 0.33 ({\text{sys}}))\%$$

$$B(\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}) = (4.70 \pm 0.13 ({\text{stat}}) \pm 0.35 ({\text{sys}}))\%$$

$$\cos \theta_{BY} = \frac{2E_{B}^{*}E_{Y}^{*} - M_{B}^{2} - m_{Y}^{2}}{2p_{B}^{*}p_{Y}^{*}}$$

Talk by M. Merola
B full reconstruction algorithms

- Belle (II) analyses use semileptonic and hadronic “tagging” for flavour, charge, kinematics.

MC tag-side efficiency @10% purity

<table>
<thead>
<tr>
<th></th>
<th>Had. B^+/B^{0} [%]</th>
<th>SL. B^+/B^{0} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Reconstruction Belle</td>
<td>0.28/0.18</td>
<td>0.67/0.63</td>
</tr>
<tr>
<td>FEI Belle</td>
<td>0.76/0.46</td>
<td>1.80/2.04</td>
</tr>
</tbody>
</table>

N of correct B_{tag} per 1 fb$^{-1}$ in Belle (FEI)

8350/5060

19800/22440

650k Hadronic B-tags for physics analysis already (50 fb$^{-1}$)!
- Enough for tagged measurements of many modes.

Belle II

Phillip URQUIJO

Talk by S. Stekova
Semileptonic and leptonic B decays / Targets

- History of anomalies in |V_{ub}|, |V_{cb}|, B→D(∗) τ ν — key to identify bias.
- CKM precision tests are challenging, but more data will help overcome over most systematic errors.
- Improvements to K_L reconstruction, beam background mitigation for SE_ECL, B→D** l ν background, tag efficiency, tag calibration.
- Purely leptonic modes are a Belle II focus for > 1 ab⁻¹.

<table>
<thead>
<tr>
<th>Observables</th>
<th>Belle (2017)</th>
<th>Belle II 5 ab⁻¹</th>
<th>Belle II 50 ab⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{cb}</td>
<td>incl.</td>
<td>42.2⋅10⁻³ ⋅ (1 ± 1.8%)</td>
</tr>
<tr>
<td></td>
<td>V_{cb}</td>
<td>excl.</td>
<td>39.0⋅10⁻³ ⋅ (1 ± 3.0%{ex} ± 1.4%{th.})</td>
</tr>
<tr>
<td></td>
<td>V_{ub}</td>
<td>incl.</td>
<td>4.47⋅10⁻³ ⋅ (1 ± 6.0%{ex} ± 2.5%{th.})</td>
</tr>
<tr>
<td></td>
<td>V_{ub}</td>
<td>excl. (WA)</td>
<td>3.65⋅10⁻³ ⋅ (1 ± 2.5%{ex} ± 3.0%{th.})</td>
</tr>
<tr>
<td>B(B → τν) [10⁻⁶]</td>
<td>91 ⋅ (1 ± 24%)</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>B(B → μν) [10⁻⁶]</td>
<td>< 1.7</td>
<td>20%</td>
<td>7%</td>
</tr>
<tr>
<td>R(B → Dτν) (Had. tag)</td>
<td>0.374 ⋅ (1 ± 16.5%)</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>R(B → D∗τν) (Had. tag)</td>
<td>0.296 ⋅ (1 ± 7.4%)</td>
<td>3%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Belle II
Phillip URQUIJO
b → s γ Reconstruction

- Large program of radiative decays CP violation - New sources of CP violation in B→K⁺γ, pγ could reveal right handed currents.
- B→K⁺π⁰γ is a near term target for TDCPV analysis.
- b→d currents not well explored yet.
- Reconstructed yields (2.6 fb⁻¹) consistent with WA branching fraction.

<table>
<thead>
<tr>
<th>Signal Yield (stat. error only)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>B⁰ → K⁺⁰[K⁺π⁻]γ</td>
<td>19.1 ± 5.2</td>
</tr>
<tr>
<td>B⁺ → K⁺⁺[K⁺π⁰]γ</td>
<td>9.8 ± 3.4</td>
</tr>
<tr>
<td>B⁺ → K⁺⁺[K⁺π⁻]γ</td>
<td>6.6 ± 3.1</td>
</tr>
</tbody>
</table>

- Any right-handed currents from NP?
- SM favored
- SM disfavored, enhanced with RH current

Talk by S. Halder

Belle II

Phillip URQUIJO
EW penguin B decay prospects

- Belle II should refute/confirm deviations observed by LHCb within 4 years. Expect first signals by ICHEP.
- Electron channels (low X/X₀) good resolution & τ channels
- Inclusive B→X l⁺ l⁻ (initially sum over exclusives with M(Xₜ) < 1.8 GeV/c², eventually: explore fully inclusive recoil).

Expect to see first clear signals in data collected to date!

Rare: e.g. BR(B⁰→K⁺π⁻)=(9.9±1.2) x 10⁻⁷

Talk by S. Halder

Belle Preliminary 2019,
R(K*) arXiv:1904.02440
R(K) arXiv:1908.01848

Belle II 2019
Projections for R(K*)

Pull

Events / (0.0025 GeV/c²)

M_{bc} (GeV/c²)

Pull

Events / (0.0025 GeV/c²)

M_{bc} (GeV/c²)

R(K)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

q² (GeV²/c⁴)

0 5 10 15 20

Data
LHCb
BaBar
SM prediction
• Except for $B \rightarrow X_{s+d} \gamma$ inclusive, all channels are highly statistics limited.
• Expect systematics to be subdominant beyond 50 ab$^{-1}$
• Key to understand beam background induced efficiency loss and E_{ECL} degradation in $B \rightarrow K\nu\nu$.
• SM level (5 σ) in $B \rightarrow X\nu\nu$. Novel ALPs/Scalars/LLPs searches in B decays.

<table>
<thead>
<tr>
<th>Observables</th>
<th>Belle (2017)</th>
<th>Belle II 5 ab$^{-1}$</th>
<th>Belle II 50 ab$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(B \rightarrow K^{+}\nu\bar{\nu})$</td>
<td>$< 40 \times 10^{-6}$</td>
<td>25%</td>
<td>9%</td>
</tr>
<tr>
<td>$B(B \rightarrow K^{+}\nu\bar{\nu})$</td>
<td>$< 19 \times 10^{-6}$</td>
<td>30%</td>
<td>11%</td>
</tr>
<tr>
<td>$A_{CP}(B \rightarrow X_{s+d}\gamma)$ [10$^{-2}$]</td>
<td>$2.2 \pm 4.0 \pm 0.8$</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$S(B \rightarrow K^{0}_{S}\pi^{0}\gamma)$</td>
<td>$-0.10 \pm 0.31 \pm 0.07$</td>
<td>0.11</td>
<td>0.035</td>
</tr>
<tr>
<td>$S(B \rightarrow \rho\gamma)$</td>
<td>$-0.83 \pm 0.65 \pm 0.18$</td>
<td>0.23</td>
<td>0.07</td>
</tr>
<tr>
<td>$A_{FB}(B \rightarrow X_{s}\ell^{+}\ell^{-})$ (1 < q^{2} < 3.5 GeV2/c4)</td>
<td>26%</td>
<td>10%</td>
<td>3%</td>
</tr>
<tr>
<td>$Br(B \rightarrow K^{+}\mu^{+}\mu^{-})/Br(B \rightarrow K^{+}e^{+}e^{-})$ (1 < q^{2} < 6 GeV2/c4)</td>
<td>28%</td>
<td>11%</td>
<td>4%</td>
</tr>
<tr>
<td>$Br(B \rightarrow K^{+}(892)\mu^{+}\mu^{-})/Br(B \rightarrow K^{+}(892)e^{+}e^{-})$ (1 < q^{2} < 6 GeV2/c4)</td>
<td>24%</td>
<td>9%</td>
<td>3%</td>
</tr>
<tr>
<td>$B(B \rightarrow \gamma\gamma)$</td>
<td>$< 8.7 \times 10^{-6}$</td>
<td>23%</td>
<td>–</td>
</tr>
<tr>
<td>$B(B \rightarrow \tau\tau)$ [10$^{-3}$]</td>
<td>–</td>
<td>< 0.8</td>
<td>–</td>
</tr>
</tbody>
</table>

\[
\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{td} V_{ts}^{*} \frac{e^2}{16\pi^2} \sum (C_1 O_1 + C_2 O_2') + \text{h.c.}
\]
Expected (Integrated) Luminosity

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>Integrated luminosity > 0.5 — 1.0 ab(^{-1})</td>
</tr>
<tr>
<td>2022</td>
<td>$\beta_y^* \to$ reach 0.3 mm (design value)</td>
</tr>
<tr>
<td>2023</td>
<td>Integrated luminosity 5 ab(^{-1})</td>
</tr>
<tr>
<td>2026</td>
<td>Peak luminosity to reach $\sim 8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ (design value)</td>
</tr>
<tr>
<td>2028</td>
<td>Integrated luminosity 50 ab(^{-1})</td>
</tr>
</tbody>
</table>
Belle II - LHCb Comparison

<table>
<thead>
<tr>
<th>Observable</th>
<th>Current Belle/ Babar</th>
<th>2019 LHCb</th>
<th>Belle II (5 ab⁻¹)</th>
<th>Belle II (50 ab⁻¹)</th>
<th>LHCb (23 fb⁻¹)</th>
<th>Belle II Upgrade (250 ab⁻¹)</th>
<th>LHCb upgrade II (300 fb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKM precision, new physics in CP Violation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sin 2β/φ₁ (B→ J/ψ Kₛ)</td>
<td>0.03</td>
<td>0.04</td>
<td>0.012</td>
<td>0.005</td>
<td>0.011</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>γ/ψ₁</td>
<td>13°</td>
<td>5.4°</td>
<td>4.7°</td>
<td>1.5°</td>
<td>1.5°</td>
<td>0.4°</td>
<td>0.4°</td>
</tr>
<tr>
<td>α/ψ₂</td>
<td>4°</td>
<td>–</td>
<td>2</td>
<td>0.6°</td>
<td>–</td>
<td>0.3°</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New physics in radiative & EW Penguins, LFUV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_CP (B→η' Kₛ, gluonic penguin)</td>
<td>0.08</td>
<td>–</td>
<td>0.03</td>
<td>0.015</td>
<td>–</td>
<td>0.007</td>
<td>–</td>
</tr>
<tr>
<td>A_CP (B→K_Sπ⁰)</td>
<td>0.15</td>
<td>–</td>
<td>0.07</td>
<td>0.04</td>
<td>–</td>
<td>0.02</td>
<td>–</td>
</tr>
<tr>
<td>Charm and τ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔA_CP (KK-ππ)</td>
<td>–</td>
<td>8.5×10⁻⁴</td>
<td>–</td>
<td>5.4×10⁻⁴</td>
<td>1.7×10⁻⁴</td>
<td>2×10⁻⁴</td>
<td>0.3×10⁻⁴</td>
</tr>
<tr>
<td>A_CP (D→π/π⁰)</td>
<td>1.2%</td>
<td>–</td>
<td>0.5%</td>
<td>0.2%</td>
<td>–</td>
<td>0.1%</td>
<td>–</td>
</tr>
<tr>
<td>B_r(τ→e γ)</td>
<td><120×10⁻⁹</td>
<td>–</td>
<td><40×10⁻⁹</td>
<td><12×10⁻⁹</td>
<td>–</td>
<td><5×10⁻⁹</td>
<td>–</td>
</tr>
<tr>
<td>B_r(τ→μμμ)</td>
<td><21×10⁻⁹</td>
<td><46×10⁻⁹</td>
<td><3×10⁻⁹</td>
<td><3×10⁻⁹</td>
<td><16×10⁻⁹</td>
<td><0.3×10⁻⁹</td>
<td><5×10⁻⁹</td>
</tr>
</tbody>
</table>

Possible in similar channels, lower precision – Not competitive.

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. B→Kνν, νν), inclusive decays, time dependent CPV in B_d, τ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlaps in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.).

LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2028.

arXiv: 1808.08865 (Physics case for LHCb upgrade II), PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book)
Conclusion

- **60 fb⁻¹ collected** (much of it during Covid19 travel restrictions): x10 or more each year since commencing in 2018.
- Enough to explore the power of Belle II with performance control channels, and to start the flavour physics program in earnest.
- Presented selected highlights with up to 10 fb⁻¹ with 2018+2019 data.
- **Dark sector publication on dark Z’,** with ALPs and dark photons to come soon.
- **First competitive flavour publications within reach.**

Belle II Presentations at FPCP

- **F. Abudinen**, Belle II Highlights on first physics results
- **R. Briere**, Charm and Charmonium at Belle II
- **S. Halder**, Results and Prospects of Radiative and Electroweak Penguin Decays at Belle II
- **M. Merola**, CKM first measurements at Belle II
- **S. Stefkova**, Status and future development of the Full Event Interpretation algorithm at Belle II
- **M. H. Villanueva**, Tau physics highlights and prospects at Belle II