τ physics results and prospects at Belle II

Michel Villanueva
The University of Mississippi

On behalf of the Belle II collaboration

Conference on Flavour Physics and CP violation (FPCP) 2020
Jun 8, 2020
SuperKEKB and The Belle II experiment

- Challenges at L=8x10^{35} 1/cm^2/s:
 - Higher background (Radiative Bhabha, Touschek, beam-gas scattering, etc.).
 - Higher trigger rates (High performance DAQ, computing).

"Nano-beams": vertical beam size is 50nm at the IP.
The Belle II experiment

- Integrated luminosity expected: 50 ab\(^{-1}\) (x50 than the previous B factories)

EM Calorimeter: CsI(Tl), waveform sampling

lectron (7 GeV)

Beryllium beam pipe: 2 cm diameter

Vertex detector: 2 layers DEPFET + 4 layers DSSD

Central Drift Chamber: He(50%):C\(_2\)H\(_6\)(50%), Small cells, long lever arm, fast electronics

Particle Identification:
- Time-of-Propagation counter (barrel)
- Prox. Focusing Aerogel RICH (fwd)

Readout (TRG, DAQ):
- Max. 30kHz L1 trigger
- ~100% efficient for hadronic events.
- 1MB (PXD) + 100kB (others) per event
- over 30GB/sec to record
- Offline computing: Distributed over the world via the GRID

Integrated luminosity expected:

\[
\int \frac{1}{cm^2 s} = 8 \times 10^{35} \frac{1}{cm^2 s}
\]

\[
\int \frac{1}{ab} = 50 \frac{1}{ab}
\]
The Belle II experiment

Integrated luminosity expected: 50 ab^{-1} (x50 than the previous B factories)

Beryllium beam pipe: 2 cm diameter

EM Calorimeter: CsI(Tl), waveform sampling

Particle Identification:
- Time-of-Propagation counter (barrel)
- Prox. Focusing Aerogel RICH (fwd)

Vertex detector:
2 layers DEPFET + 4 layers DSSD

Central Drift Chamber:
He(50%):C_{2}H_{6}(50%), Small cells, long lever arm, fast electronics

Electron (7 GeV)

Positron (4 GeV)

Readout (TRG, DAQ):
Max. 30kHz L1 trigger
~100% efficient for hadronic events.
1MB (PXD) + 100kB (others) per event - over 30GB/sec to record

Offline computing:
Distributed over the world via the GRID

To the date, we have reached an integrated luminosity of 50 fb^{-1}
τ lepton physics on the B-Factories

- B-Factories are also τ-factories!
 \[\sigma(e^+e^- \rightarrow BB) = 1.05 \text{ fb}^{-1} \]
 \[\sigma(e^+e^- \rightarrow \tau \tau) = 0.92 \text{ nb} \]

- τ lepton decays allow a clean analysis of hadronization, determination of SM parameters, properties of weak currents and BSM searches.

- Belle and BaBar provided many interesting results in τ lepton physics along the last two decades.

- Many of this results will be updated by Belle II
The physics program at Belle II

- The enormous number of e^+e^- collisions features a unique environment for the study of τ physics with high precision.

- Further details can be found in “The Belle II Physics Book”, which is now available at: PTEP 2019 (2019) 12, 123C01

- The physics program of the Belle II experiment covers also high precision measurements in B decays, charm, dark sectors, exotic particles, etc.

- See the Belle II talks during FPCP 2020:
 - Charm and charmonium
 - First B physics results
 - Radiative and electroweak penguin decays
 - CKM matrix
 - Full Event Interpretation algorithm
 - Belle II status and prospects
Tau decay event in early Belle II data

Exp 7, Run 3521
Started at 2019/04/30 06:18 JST
Stopped at 2019/04/30 07:06 JST
Run type: physics
Measurement of the τ lepton mass

- Measured in the decay mode $\tau \rightarrow 3\pi\nu$, using a pseudomass technique developed by the ARGUS collaboration:
 \[M_{\text{min}} = \sqrt{M_{3\pi}^2 + 2(E_{\text{beam}} - E_{3\pi})(E_{3\pi} - P_{3\pi})} \]

- The distribution of the pseudomass is fitted to a empirical edge function.

- Current best fit from Belle 1
 \[1776.61 \pm 0.13 \pm 0.35 \text{ MeV} \]

- Not so good compared to the BES III mass measurement in the production threshold 2
 \[1776.91 \pm 0.12 \pm 0.13 \text{ MeV} \]

Uncertainty in the τ mass has important consequences the accuracy of lepton universality measurements:

\[\frac{\Gamma(\mu \rightarrow e\nu\bar{\nu})}{\Gamma(\tau \rightarrow e\nu\bar{\nu})} \sim \left(\frac{g_\mu}{g_\tau} \right)^2 m_\mu^5 m_\tau^5 \]

Our result, obtained from Belle II early data 3

\[m_\tau = (1776.4 \pm 4.8 \text{ (stat)}) \text{ MeV/c}^2 \]

is consistent with previous experimental results.

We are updating the result using the most recent data.

\[\tau \rightarrow \ell + \alpha \] (invisible boson)

- It probes the existence of a long-lived BSM boson \(\alpha \).

- Peaking signal in a two-body decay spectrum in the \(\tau \) lepton rest frame (TRF).

- Since we cannot access to the TRF due to the missing neutrino, a pseudo-TRF is built with the following assumptions:
 - \(E_\tau \approx E_{\text{cms}}/2 \), \(\vec{p}_\tau \approx \vec{p}_{3\pi} \)

- Fit full spectrum with:
 - SM expectation
 - SM + NP expectation and compare likelihood of the two models

- Large smearing due to imprecise boost direction (lost \(\nu \)):
 \[m(\alpha) = 0 \]
 \[m(\alpha) = 1.4 \]

Latest results from
- ARGUS (472 pb\(^{-1}\)) *
- MARK III (9.4 pb\(^{-1}\))

* Belle II is competitive right now.

H. Albrecht et. al. (ARGUS)
CP violation in $\tau \rightarrow K_S \pi \nu$

- The decay of the τ lepton to final states containing a K_s meson will have a nonzero decay-rate asymmetry due to CP violation in the kaon sector.

$$A_\tau = \frac{\Gamma(\tau^+ \rightarrow \pi^+ K_S^0 \bar{\nu}_\tau) - \Gamma(\tau^- \rightarrow \pi^- K_S^0 \bar{\nu}_\tau)}{\Gamma(\tau^+ \rightarrow \pi^+ K_S^0 \bar{\nu}_\tau) + \Gamma(\tau^- \rightarrow \pi^- K_S^0 \bar{\nu}_\tau)}$$

- The SM prediction1,2 is

$$A_{\tau}^{SM} = (3.6 \pm 0.1) \times 10^{-3}$$

- BaBar measured:

$$A_{\tau}^{BaBar} = (-3.6 \pm 2.3 \pm 1.1) \times 10^{-3}$$

2.8 σ away from SM

A measurement of A_τ is a priority at Belle II.

- Improved vertexing and tracking algorithms play a key role.

Lepton Flavor Violation

• $\tau^- \rightarrow \ell \gamma$, $\tau^- \rightarrow hh\ell$, etc. (Almost) forbidden in the SM

Assuming Belle II full dataset (50 ab$^{-1}$):

- $B(\ell_1 \rightarrow \ell_2 \gamma) = \frac{3\alpha}{32\pi} \sum_{i=2,3} U_{\ell_1 i}^* U_{\ell_2 i} \frac{\Delta m_{\tau i}^2}{M_W^2}$

$\Delta m_{\tau i}^2$ is the mass squared difference between the ith and 1st generations of neutrinos.

Prospective of Belle II:
- Improvement of 2 orders of magnitude
Lepton Flavor Violation

- $\tau^{-} \to \ell \gamma$, $\tau^{-} \to hhh$, etc. (Almost) forbidden in the SM

Assuming Belle II full dataset (50 ab$^{-1}$):

![Graph showing 90% C.L. upper limits for LFV τ decays](image)

Prospective of Belle II:
- Improvement of 2 orders of magnitude

SM case:
- BR $\sim 10^{-54}$

NP case:
- BR $\sim 10^{-7} \cdot 10^{-10}$

- Observation of LFV is a clear signature of New Physics!
Lepton Flavor Violation

- Signal identification in LFV analysis is done using a defining a region in the M_τ vs $\Delta E (= E_\tau - E_{beam})$ space.

- Rotated signal region:

$$
\begin{pmatrix}
M'_{3\mu} \\
\Delta E'
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
M_{3\mu} \\
\Delta E
\end{pmatrix}
$$

$\tau \rightarrow 3\mu$ Signal events

$\tau \rightarrow 3\mu$ (107 events)

$\tau \rightarrow \ell \gamma$ w/ background components

- Belle II PID algorithms will be crucial for LFV studies.

SM case:
$BR \sim 10^{-54}$

NP case:
$BR \sim 10^{-7}$ - 10^{-10}
Searches of $\tau \rightarrow \eta \pi \nu$

- Mechanisms in the SM: isospin violation

\[
\epsilon_{\eta\pi} = \frac{\langle \pi^0 | H | \eta \rangle}{m_{\eta}^2 - m_{\pi^0}^2} = \sqrt{3} \frac{m_d - m_u}{4 m_s - m} \sim 1.5 \times 10^{-2}
\]

- The corresponding suppression of the SM contribution can make new physics visible.

- Constraints on scalar and tensor couplings can be obtained from upper limits on BRs.\(^2\)

Sensitivity of $\tau \rightarrow \eta \pi \nu$ @ Belle II

- We have the capability of testing QCD models
- Control of the background is fundamental

Previous results:
- 670 fb^{-1}
- 470 fb^{-1}

SM predictions: $\text{BR}(\tau \rightarrow \eta \pi \nu) \sim 10^{-5}$

<table>
<thead>
<tr>
<th>BR$_V$ (x105)</th>
<th>BR$_S$ (x105)</th>
<th>BR$_{V+S}$ (x105)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36</td>
<td>1.0</td>
<td>1.36</td>
<td>MDM, 1 resonance</td>
</tr>
<tr>
<td>[0.2, 0.6]</td>
<td>[0.2, 2.3]</td>
<td>[0.4, 2.9]</td>
<td>MDM, 1 and 2 resonances</td>
</tr>
<tr>
<td>0.44</td>
<td>0.04</td>
<td>0.48</td>
<td>Nambu-Jona-Lasinio</td>
</tr>
<tr>
<td>0.13</td>
<td>0.20</td>
<td>0.33</td>
<td>Analyticity, Unitarity</td>
</tr>
<tr>
<td>0.26</td>
<td>1.41</td>
<td>1.67</td>
<td>3 coupled channels</td>
</tr>
</tbody>
</table>

Other models:
- MDM, 1 resonance
- MDM, 1 and 2 resonances
- Nambu-Jona-Lasinio
- Analyticity, Unitarity
- 3 coupled channels

1R Escribano, S Gonzalez-Solis, P Roig - Physical Review D, 2016
Summary

• SuperKEKB and Belle II will produce a sample of τ pairs 50 times larger than previous B-factories. Precision studies with τ leptons involved will be performed.

• The performance of the detector in the first months of data taking is good. Belle II is reconstructing $e^+e^- \rightarrow \tau^+\tau^-$ events. Performance studies on going.

• The τ lepton decays presented aim to study:
 • Searches of a long-lived BSM boson α and heavy neutrinos
 • CP violation
 • Lepton Flavor Violation decays.
 • Properties of vector, scalar and tensorial interactions, isospin symmetries.

• Belle II will provide a sort of very interesting results in the next decade.
 See “The Belle II Physics Book” at PTEP 2019 (2019) 12, 123C01
Thank you
Event selection strategy

- Event is divided in two sides (signal and tag) using a plane defined by a **thrust axis**, build with all the final state particles:

 \[V_{thrust} = \frac{\sum_i |\vec{p}_{i\,cm}^\ast \cdot \hat{n}_{thrust}|}{\sum_i |\vec{p}_{i\,cm}|} \]

- Thrust axis: \(\hat{n}_{thrust} \) such that \(V_{thrust} \) is maximum.