

Selective background Monte Carlo simulation at Belle II

James Kahn, Andreas Lindner, Thomas Kuhr | 5th November 2019

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

Belle II Experiment

Asymmetric $e^+e^$ experiment mainly at the $\Upsilon(4S)$ resonance (10.58 GeV) e^+ B $\Upsilon(4S)$

Focus on B, charm and τ physics

	KEKB/Belle	SuperKEKB/Belle II
Operation	1999–2010	2019-2027
Peak luminosity	$2.11 imes 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$8 imes 10^{35} { m cm^{-2} s^{-1}}$
ntegrated luminosity	1 ab ^{-1} (772 million BB pairs)	50 ab ⁻¹

Problem

- Approach at Belle:
 - \blacksquare Background MC \approx 10 \times data
- \blacksquare Infeasible at Belle II \rightarrow still require high statistics
- Currently: \sim 100 HS06 s/event
 - $1 \text{ ab}^{-1} \approx 80 \text{ GHS06 s}$

Skims

- Physics working-group specific datasets (26)
- General selections applied to discard trivial backgrounds
- Retain O(0.1–10%) of full dataset

Problem

- Approach at Belle:
 - Background MC \approx 10 \times data
- Infeasible at Belle II \rightarrow still require high statistics
- Currently: \sim 100 HS06 s/event
 - 1 $ab^{-1} \approx 80 \, GHS06 \, s$

Proposed solution:

Insert NN to predict skims before expensive steps

Karlsruhe Institute of Technology

Skims

- Physics working-group specific datasets (26)
- General selections applied to discard trivial backgrounds
- Retain O(0.1–10%) of full dataset

Dataset

 \sim 300, 000 particle collision events with binary classification labels:

- Hadronic B+ meson reconstruction ($\sim 5\%$)
- Time-dependent *CP* violation ($\sim 0.2\%$)

Graph terminology

- Nodes = Particles
- Node attributes = Particle properties
- Edges = Parent-daughter relations (decays)
- Graph type = Tree

Dataset

 \sim 300, 000 particle collision events with binary classification labels:

- Hadronic B+ meson reconstruction ($\sim 5\%$)
- Time-dependent *CP* violation ($\sim 0.2\%$)

Graph terminology

- Nodes = Particles
- Node attributes = Particle properties
- Edges = Parent-daughter relations (decays)
- Graph type = Tree

r(4 <i>S</i>) (300553) ^{B0} (-511)	Feature	Definition
$\begin{array}{c c} J(\phi) & (443) & & \\ \mu^{+} & (-13) & \\ \mu^{-} & (13) & \\ K_{2}^{0} & (310) & \\ pi^{+} & (-211) & \\ pi^{+} & (211) & \\ pi^{0} & (-211) & \\ pi^{-} & (-211) & \\ K_{+}^{+} & (321) & \\ pi^{-} & (-211) & \\ \mu^{+} & (-13) & \\ \gamma_{+} & (-13) & \\ \gamma_{+} & (14) & \\ \end{array}$	PDG code Mother PDG code Mass Charge Energy Momentum Production time Production vertex Statue bit	Identifier of particle type and charge. Particle parent PDG code. Particle mass in GeV/c ² . Electric charge of the particle. Particle energy in GeV. Three momentum of the particle in Gev/c. Production time in ns relative to Υ(4S) production. Coordinates of particle production vertex.

Graph Isomorphism Network

Node *N* update rule of layer ℓ (Red = trainable):

$$N^{(\ell+1)} = \mathsf{MLP}^{(\ell)} \left(W_p^{(\ell)} N_p^{(\ell)} + W^{(\ell)} N^{(\ell)} + W_d^{(\ell)} \sum_{\text{daughters}} N_d^{(\ell)} \right)$$

Intuition: Create representation of node considering its neighbours

- Custom weights for parent (W_p) , node (W), daughters (W_d)
- Independent of daughter ordering
- Normalise adjacency matrix
 - Prevent over-representation in high multiplicity decays

Normalised Laplacian $\tilde{A} = A + I_N$ $\tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$ $\tilde{I} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$

Special case of:

K. Xu, W. Hu, J. Leskovec, S. Jegelka, How Powerful are Graph Neural Networks? (CoRR 2018)

- Train on 250k events (validate on 10%)
- Test on 50k independent events
- Batch normalisation, dropout, class weights, early stopping, reduce LR on plateau, model checkpoint (save only best), ...

- Train on 250k events (validate on 10%)
- Test on 50k independent events
- Batch normalisation, dropout, class weights, early stopping, reduce LR on plateau, model checkpoint (save only best), ...
- Additional convolutional 1D for full reconstruction dataset

- Train on 250k events (validate on 10%)
- Test on 50k independent events
- Batch normalisation, dropout, class weights, early stopping, reduce LR on plateau, model checkpoint (save only best), ...
- Additional convolutional 1D for full reconstruction dataset

6/13

- Train on 250k events (validate on 10%)
- Test on 50k independent events
- Batch normalisation, dropout, class weights, early stopping, reduce LR on plateau, model checkpoint (save only best), ...
- Additional convolutional 1D for full reconstruction dataset
- Insert NumPy-based module into Belle II analysis framework for inference

(b) Full reconstruction

Bias check

Compare event-level kinematics:

- Pass skim = True
- Pass skim and NN = True positive

Bias check

Compare event-level kinematics:

- Pass skim = True
- Pass skim and NN = True positive

Kullback-Leibler divergence of Q from P: $D_{\mathsf{KL}}(P \parallel Q) = -\sum_{x \in \mathcal{X}} P(x) \log \left(\frac{Q(x)}{P(x)}\right)$

Summary

- Belle II has begun data taking
 - simulation will need to keep up
- Simulations for the full 50 ab⁻¹ too computationally expensive
 - Requires smarter solutions
- Propose to use NN to go from: simulate everything \rightarrow simulate necessary
 - Must be general enough to handle each physics working-group case
- Shown potential for orders of magnitude speedup and quantification of bias

Current work:

- Scale up datasets and bias checks
- Implement bias mitigation

Thank you

Backup

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr

Original Graph Convolutional Networks (GCN)

Propagation rule of layer activations $H^{(1)}$

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

Thomas N. Kipf, Max Welling, Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017)

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr

Luminosity projection

TDCPV divergence (overload)

