
Selective background Monte Carlo simulation at
Belle II

James Kahn12, Thomas Kuhr1, and Martin Ritter1
1 Ludwig-Maximilians University Munich, Faculty of Physics, Excellence Cluster Universe,
Boltzmannstr. 2, 85748 Garching, Germany

E-mail: james.kahn@kit.edu

Abstract. The Belle II experiment, beginning data taking with the full detector in early
2019, is expected to produce a volume of data fifty times that of its predecessor. This
dramatic increase in data comes the opportunity for studies of rare previously inaccessible
processes. The investigation of such rare processes in a high data-volume environment requires
a correspondingly high volume of Monte Carlo simulations to prepare analyses and gain a deep
understanding of the contributing physics processes to each individual study. This presents a
significant challenge in terms of computing resource requirements and calls for more intelligent
methods of simulation, in particular background processes with very high rejection rates. This
work presents a method of predicting in the early stages of the simulation process the likelihood
of relevancy of an individual event to the target study using convolutional neural networks.
The results show a robust training that is integrated natively into the existing Belle II analysis
software framework.

1. Introduction
The Belle II experiment will push the precision frontier by obtaining an integrated luminosity
of 50 ab−1 worth of data, or roughly fifty times that of the Belle experiment. Performing
measurements on this volume of data requires modelling of the experiment as best as possible
to first prepare each analysis, in this case in the form of Monte Carlo simulations. This allows
fine tuning physics analyses to be able to filter the physics process being searched for, the signal,
from everything else, the background. Since a large portion of the measurements will be focused
on so-called rare processes, processes with a branching fraction of 10−6 and lower, a strong
statistical knowledge of the backgrounds is required to accurately distinguish the signal from
the remaining background. The approach taken during the Belle experiment was to simulate ten
times the volume of measured data, i.e. an integrated luminosity of 10× 0.711 ab−1. The same
approach at Belle II would then require simulations of an integrated luminosity of 500 ab−1 which
is infeasible given the current simulation time and computing power available. Not only that,
but for any given analysis, or even class of analyses, a large portion of the data is trivially thrown
away as irrelevant to that particular study. Therefore more intelligent methods of simulation
are required to produce large volumes of relevant simulated data.
2 Present address: Karlsruhe Institute of Technology, Institut für Experimentelle Teilchenphysik, Wolfgang-
Gaede-Str. 1, 76131 Karlsruhe, Germany



Generate
Keep

Discard 

SkimReconstruct AnalyseSimulate

38.25%0.08% 61.67%

Figure 1: Stages in the Monte Carlo event simulation process. The figures shown under the
first three stages indicate the percent of simulation time required by the given stage before the
skim.

2. Monte Carlo simulation at Belle II
Figure 1 shows an outline of the current Monte Carlo simulation procedure for Belle II, where the
stages are as follows: Generate (green) involves the generation of the initial collision event using
the EvtGen package [1] in conjunction with Pythia [2]; Simulate (orange) utilises the Geant4
toolkit [3] to perform the simulation of the generated collision products with the Belle II detector.
The output format of this stage is identical to that of the real experiment output. Reconstruct
(red) performs the reconstruction of detector information into particle candidates; Skim involves
the selection of events which are of easily identifiable interest to particular working-groups within
the Belle II collaboration; and Analyse represents the specific physics analyses performed on the
data (real or simulated). The relative execution times of each stage in the simulation procedure
are also shown as a percentage of the total time.

The Belle II Analysis Software Framework (basf2) [4] is the core framework used to manage
each stage in the data flow shown in figure 1. The framework is written predominantly in
C++ but supports user-developed modules written in Python. This allows the integration of
current machine learning libraries, most of which are developed almost exclusively for high-level
languages such as Python, directly into the simulation processing flow. The machine learning
framework used in this study is Tensorflow [5], with the Keras libraries utilised to simplify the
construction of the neural networks. All trainings described in this study were performed using
a single NVIDIA GTX 1080Ti GPU.

3. Data set
A key part of missing energy studies at Belle II, those containing neutrinos in the final state, is
the ability to fully reconstruct the initial Υ(4S) produced within the detector while also having
knowledge of the initial state. The Full Event Interpretation (FEI) [6] software is the tool used
within the Belle II software to perform this full reconstruction of the Υ(4S) by automating the
reconstruction of the B meson not involved in the decay being searched for by the particular
analysis. The data set used in this study contains simulated events which have had the FEI
algorithm applied. Loose selections were applied to the resulting events as the skim stage of
processing. The resulting combined event-level retention rate of the FEI and selections are
shown in table 1, where hadronic represents the reconstruction of B meson decays involving no
neutrinos in the final state3. The two categories highlighted in bold are those used for training
in this study.

The data set contains 8.5(4) million simulated events for the hadronically tagged
B0B̄0(B+B−) sample, with approximately half of the events being those which survive the
skim stage, and the other those discarded by it. Events are flagged by whether they survive the
skim selections, and these flags are used as training labels for the neural networks. Ten percent
of events are reserved for validation during training to check against overfitting.

We characterise the data set in two ways: decay strings, string representations of the
3 Neutrinos may be present, however, in the decay of the B meson not reconstructed by the FEI.



Table 1: Full Event Interpretation skim retention rates showing the remaining fraction of
simulated events after data cleaning selections (skim) have been applied. The figures in bold
are those used in this study.

Channel Hadronic B+ Hadronic B0

B0B̄0 5.62% 4.25%
B+B− 8.35% 3.82%

Table 2: Features of each MC generated particle used as input to network training and their
definition. For decay string inputs only the PDG code is used to identify each particle.

Feature Definition

PDG code Identifier of particle type and charge.
Mother PDG code Particle parent PDG code.
Mass Particle mass in GeV/c2.
Charge Electric charge of the particle.
Energy Particle energy in GeV.
Momentum Three momentum of the particle in GeV/c.
Production time Production time in ns relative to Υ(4S) production.
Production vertex Coordinates of particle production vertex.

simulated decay; and MCParticles, the array of physical properties associated with each
individual simulated particle. Table 2 summarises the MCParitcles properties used as input
in this study. All continuous properties are normalised to the range −1 to 1, and discrete
properties are one-hot encoded (Charge) or tokenised for embedding within the network (PDG
and mother PDG codes).

4. Training
The procedure for training the neural networks is as follows: we first explore a range of network
architectures trained on the decay string and MCParticle inputs individually, we then select the
optimally performing architectures from each and concatenate their outputs as input to a final
series of fully-connected layers. The final combined network is trained again from scratch and
re-optimised. A schematic of the final network structure is shown in figure 2. The structure
is logically comprised of three individual sub-networks: two individual sub-networks processing
the MCParticles and decay string inputs individually, and a final single sub-network to produce
the classification output.

For each sub-network, combinations of fully connected and convolutional layers were
investigated. ResNet [7], ResNeXt [8], and 1× 1 convolutions [9] variants were also explored for
the MCParticles sub-network. For the decay strings, recurrent LSTM [10] layers and so-called
wide convolutions [11] were investigated.

The loss function used in training was binary cross-entropy, utilising the Adam [12] optimiser
with and without AMSGrad [13]. LeakyRELU was used as the activation function for
intermediate layers, with a sigmoid activation for the final output layer. To prevent overfitting
batch normalisation and dropout were implemented as necessary. During training, the number of
layers, layer sizes (kernel sizes, number of filters, etc.), learning rate, and batch size were varied



MCParticles Decay string

Particles NN Decay NN

Concatenate

Fully connected

Prediction

Figure 2: Outline of the overall neural
network architecture. The two inputs
are first analysed individually by their
respective neural network (NN), their
outputs concatenated, and passed as input
to a final series of fully connected layers
which output the resulting prediction.

Table 3: Results of the various ar-
chitectures tested in this study. Each
value indicates the maximal performance
achieved by the given architecture after
hyper-parameter optimisation.

Model Validation loss (B+/B0)

Fully connected 0.291/0.346
Convolutional 0.276/0.299
ResNet 0.269/0.290
ResNeXt 0.278/0.299
1× 1 CNN 0.269/0.288
Convolutional-LSTM 0.265/0.311

to maximise training data classification performance. Training ended when the classification
performance on the validation data showed no improvement in three consecutive epochs.

Table 3 shows the results of training, expressed as validation loss for comparison. The fully
connected model serves as a baseline, with fully connected layers comprising both MCParticle
and decay string sub-networks. The convolutional-LSTM model corresponds to a vanilla
convolutional network for MCParticle inputs, with kernel size greater than one and no skip-
connections, and recurrent LSTM layers for decay strings. The remainder of the models use
wide convolutions for decay string inputs, and the convolutional variant shown in the model
name for MCParticle inputs. The convolutional (MCParitlces) and LSTM (decay strings)
combination showed the highest precision on validation data. The presence of recurrent layers,
however, greatly slows the relative inference and training times due to the lack of parallelisation
afforded by fully connected or convolutional layers. Therefore we identify the fully convolutional
architectures utilising the wide convolutions on decay string inputs as providing the optimal
compromise between speed and accuracy.

5. Evaluation
In order to evaluate the performance of the trained network during simulation an additional 105
events of the charged sample were simulated. The trained neural network was integrated into
the simulation procedure, as shown in figure 3. The goal here is two-fold: firstly to check that
the trainings do indeed provide a speedup in the simulation of backgrounds, and secondly to
attempt to identify any biases introduced by the network removing select events.

To apply the trained network we inserted a custom basf2 module into the simulation data
flow. The module receives the output of the generate stage, performs the necessary preprocessing
prescribed in section 3, applies the trained network, and returns a predicted likelihood that the
event will pass the skim stage. For the purposes of evaluation we retained all events, regardless
of their predicted pass likelihood.

To measure the speedup provided by the vetoing of events by the neural network, we
calculated the total simulation time required per event. To do so we summed the time
contributions of each event case: true positive, false positive, true negative, and false negative.
True and false positive cases, those the network predicts to pass, both contribute the processing
times of the entire simulation process. True and false negatives only contribute the processing
times of the generation and neural network inference. False negatives, however, require
additional simulations to compensate for those which would have passed the skim stage being



Generate
Keep

Discard

SkimReconstruct AnalyseSimulate

35.41%0.08% 57.08%

Neural Net

7.43%

Figure 3: The updated Monte Carlo event simulation process from figure 1 with the trained
neural network inserted. The numbers indicate the relative percent of processing time required
by each stage.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
NN output threshold

0
10
20
30
40
50
60
70
80
90

%
 si

m
ul

at
io

n 
tim

e 
re

du
ct

io
n

Figure 4: Simulation time speedup per event reaching the analyse stage of processing in figure
3 for the charged (B+) FEI sample.

incorrectly discarded. Figure 4 shows the resulting speedup factor for the evaluation sample as a
function of the threshold applied to the neural network output probability. At a high threshold
of around 0.9 we observed a speedup of just under 50%.

In order to check against false-negative event-rejection introducing biases into the final
simulated data set, we examined a selection of kinematic variables from the sample. We fixed
the neural network threshold at 0.85 to allow a high statistics comparison. Figure 5 shows an
example of two kinematic variables used: the beam-constrained mass of the reconstructed B

meson, defined as Mbc =
√
E2

beam − p2B, where Ebeam is half of the initial beam energy and pB
is the reconstructed momentum of the B mesons; and the total number of charged tracks in
the event. The kinematic distributions obtained from no threshold applied (blue) were scaled
by the true-positive rate of the network and compared to the observed distribution when the
threshold was applied (orange) via a binomial test. Below each distribution is the resulting
p-value, with the orange line indicating a value of 0.05 for comparison. While Mbc shows good
agreement, the number of charged tracks indicates a significant deviation from the unbiased
distribution in the six and eleven track events. This motivates a bias mitigation procedure to
be investigated in detail, either by means of re-weighting of events or as an adversarial penalty
applied to counteract bias during training (as discussed in [14]).

6. Conclusion
In this work we have explored a method of selective Monte Carlo simulation as a means of
reducing computational requirements. With the use of neural networks we have demonstrated
that it is possible to predict early in the simulation process how likely a simulated event is to be
useful in a given analysis. We developed the procedure for extracting information from Monte



400

600

800

1000

1200

1400

No
. e

ve
nt

s

Expected (binomial) [34258]
Observed (NN prediction > 0.85) [26421]

5.24 5.25 5.26 5.27 5.28 5.29
Mbc (Gev/c2)

10 1

100

p-
va

lu
e

0

1000

2000

3000

4000

5000

6000

No
. e

ve
nt

s

Expected (binomial) [34258]
Observed (NN prediction > 0.85) [26421]

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

11
.0

12
.0

No. tracks

10 47

10 30

10 13

p-
va

lu
e

Figure 5: Examples of comparison of expected (blue) and observed (orange) kinematics of
simulated events in the charged FEI evaluation sample for beam-constrained mass (left) and
number of charged tracks (right). The figures under each comparison show the corresponding
p-value of the binomial test, with the orange line marking 0.05 for visual comparison.

Carlo data in Belle II and performing the necessary preprocessing steps for input to a neural
network. We then showed, through the simulation of an independent sample, that the trained
network was able to significantly reduce the simulation time requirements. Using the output of
this independent sample we outlined a method of quantifying kinematic biases introduced by
the network. The biases found were non-negligible and motivate further investigation into their
mitigation. The results of this study are nonetheless promising and demonstrate that selective
background Monte Carlo simulations targeted to specific analyses are possible. If the biases
are able to be controlled then this represents a powerful technique that will enable significant
increases in simulation volumes for Belle II.

References
[1] Lange D J 2001 The EvtGen particle decay simulation package Nucl. Instrum. Meth. A 462 152
[2] Sjöstrand T et al. 2015 An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 159
[3] Agostinelli S et al. 2003 GEANT4: A simulation toolkit Nucl. Instrum. Meth. A 506 250
[4] Kuhr T et al. 2019 The Belle II core software Comput. Softw. Big Sci. no. 1 3 1
[5] Abadi M et al. 2016 TensorFlow: Large-scale machine learning on heterogeneous distributed systems arXiv

e-prints
[6] Keck T et al. 2019 The Full Event Interpretation: An exclusive tagging algorithm for the Belle II experiment

Comput. Softw. Big Sci. 1 3 6
[7] Kaiming H, Xiangyu Z, Shaoqing R and Jian S 2015 Deep residual learning for image recognition arXiv

e-prints
[8] Saining X, Ross G, Piotr D, Zhuowen T and Kaiming H 2016 Aggregated residual transformations for deep

Neural Networks arXiv e-prints
[9] Szegedy C et al. 2014 Going deeper with convolutions arXiv e-prints

[10] Hochreiter S and Schmidhuber J 1997 Long short-term memory Neural Comput. no. 8 9 1735
[11] Zhang Y and Wallace B 2015 A sensitivity analysis of (and practitioners’ guide to) Convolutional Neural

Networks for sentence slassification arXiv e-prints
[12] Kingma D P and Ba J 2014 Adam: A method for stochastic optimization arXiv e-prints
[13] Reddi S J, Kale S and Kumar S 2019 On the convergence of adam and beyond CoRR
[14] Shimmin C, Sadowski P, Baldi P, Weik E, Whiteson D, Goul E and Søgaard A 2017 Decorrelated jet

substructure tagging using Adversarial Neural Networks Phys. Rev. D no. 7 96 074034


