First Results and Prospects for τ Lepton Physics at Belle II

Thomas Kraetzschmar
Max Planck Institute for Physics

on behalf of the Belle II collaboration

22.01.2020
58th International Winter Meeting on Nuclear Physics
Motivation

• The Standard Model (SM) is in trouble, as it can not answer questions to:
 • Dark Matter, CP problem, ...

• Precision measurements of Leptons to test the SM and new physics models
 • Well understood QED
 • Parameters measured are
 • Free parameters: mass, lifetime,…
 • Predicted observable: g-2, EDM,…

τ

• 3rd Generation Lepton
 • Mass: 1776 ± 0.12 MeV
 • Lifetime: 290.3 ± 0.5 fs

• Properties
 • Hadronic Decays
 ▶ Probe QCD
 ▶ CP violation
 • Bigger coupling to New Physics?
 • Lepton Flavour Violation
 • 4th Generation Neutrino
 • …

kraetzsc@mpp.mpg.de
Where can one study the \(\tau \)?

- At \(e^+e^- \) machines there is a low background and well understood production mechanism for \(\tau \).
- SuperKEKB collider
Where can one study the τ?

- At e^+e^- machines there is a low background and well understood production mechanism for τ

- SuperKEKB collider
 - Increased Integrated Luminosity:

 $1 \text{ ab}^{-1}(\text{KEKB}) \rightarrow 50 \text{ ab}^{-1}(\text{SuperKEKB})$

 - SuperKEKB is a τ-factory!

 - $\sigma(e^+e^- \rightarrow \Upsilon(4s)) \approx \sigma(e^+e^- \rightarrow \tau^+\tau^-)$

 - ~ 45 billion tau pairs for full Belle II program
How to Study τ at Belle II?

Electromagnetic calorimeter (ECL):
CsI(Tl) crystals
Waveform sampling (energy, time, pulse-shape)

Central drift chamber (CDC):
He(50%):C$_2$H$_6$ (50%), small cells, fast electronics

Vertex detectors (VXD):
2 layer DEPFET pixel detectors (PXD, partially installed)
4 layer double-sided silicon strip detectors (SVD)

K$_L$ and muon detector (KLM):
Resistive Plate Counters (RPC) (outer barrel)
Scintillator + WLSF + MPPC (endcaps, inner barrel)

Magnet:
1.5 T superconducting

Trigger:
Hardware: < 30 kHz
Software: < 10 kHz

Particle Identification (PID):
Time-Of-Propagation counter (TOP) (barrel)
Aerogel Ring-Imaging Cherenkov Counter (ARICH) (FWD)

DEPFET: depleted p-channel field-effect transistor
WLSF: wavelength-shifting fiber
MPPC: multi-pixel photon counter

kraetzsc@mpp.mpg.de
One of The First $\tau^+\tau^-$ Event

Exp 3 Run 2730 Event 28993
• Tau mass measured using an analysis of a 3x1 prong decay.
• Mass extraction from pion decay only
• Using a dataset of approximately 291 pb⁻¹ of early data.
Tau mass measured using an analysis of a 3x1 prong decay.

- Mass extraction from pion decay only
- Using a dataset of approximately 291 pb\(^{-1}\) of early data.
- \(m_\tau = (1776.4 \pm 4.8)\) MeV
- First \(\tau\) physics results with early data: consistent with previous measurements!
Exotic Hadronic Currents

\[J^{PG} = 0^{+-} (a_0) = 0^{-+} (\eta) = 1^{--} (\omega) = 1^{++} (b_1) \]

- Hadronic Decays are classified by spin, parity and G-parity

- Old measurements:
 - CLEO:
 \[B(\tau \rightarrow \omega h^\pm \nu) = (1.91 \pm 0.07 \pm 0.06) \times 10^{-2} \]
 - ALEPH:
 \[B(\tau \rightarrow \omega h^\pm \pi^0 \nu) = (4.3 \pm 0.6 \pm 0.5) \times 10^{-3} \]

- Yet to be observed:
 - Belle: \[B(\tau \rightarrow \eta \pi \nu) < 7.3 \cdot 10^{-5} \]
 - BaBar: \[B(\tau \rightarrow \eta \pi \nu) < 4.0 \cdot 10^{-6} \]
Exotic Hadronic Currents

- Hadronic Decays are classified by spin, parity and G-parity

- Old measurements:
 - CLEO: \(B(\tau \to \omega h^- \nu) = (1.91 \pm 0.07 \pm 0.06) \times 10^{-2} \)
 - ALEPH: \(B(\tau \to \omega h^- \pi^0 \nu) = (4.3 \pm 0.6 \pm 0.5) \times 10^{-3} \)

- Yet to be observed:
 - Belle: \(B(\tau \to \eta \pi \nu) < 7.3 \cdot 10^{-5} \)
 - BaBar: \(B(\tau \to \eta \pi \nu) < 4.0 \cdot 10^{-6} \)
Further Standard Model Measurements

- Michel Parameters

- Tau $g - 2$ and EDM
 - Belle (30 fb$^{-1}$): EDM < $\mathcal{O}(10^{-17})$
 - First ever test of SM $g - 2$!

\[
\frac{g - 2}{2} \equiv a^\text{SM}_\tau = (1.17721 \pm 0.00005) \cdot 10^{-3}
\]

\[
a^\text{Exp}_\tau = 0.018 \pm 0.017
\]
CP Violation

- SM prediction by Bigi and Sanda for CP-violating decay-rate asymmetry
 \[A_Q^{SM} = (0.36 \pm 0.01)\% \]

- Measurement by BaBar:
 \[A_Q^{Exp} = (-0.36 \pm 0.23 \pm 0.11)\% \]
 - 2.8 \(\sigma \) from SM prediction
 - Sensitivity increase by a factor of 8 for 50 ab\(^{-1} \)

\[
A_Q = \frac{\Gamma(\tau^+ \to \pi^+ K_S^0 \bar{\nu}_\tau) - \Gamma(\tau^- \to \pi^- K_S^0 \nu_\tau)}{\Gamma(\tau^+ \to \pi^+ K_S^0 \bar{\nu}_\tau) + \Gamma(\tau^- \to \pi^- K_S^0 \nu_\tau)}
\]
LFV Search: $\tau \rightarrow l + \alpha$ (invisible)

- Motivation to look for a new Boson:
 - fermion/ν-hierarchy, ν-mixing, ν-masses
 - Light dark matter

- Idea: Search for a two body decay spectrum

- Signal will manifest as a peak in the tau rest frame (TRF)

- Challenge: Estimate TRF with missing ν_τ momentum

- Using
 $E_{\tau} \approx E_{CMS}/2$
 $\overrightarrow{p}_{\tau} \approx \overrightarrow{p}_{3\pi} = \sum_{i=1}^{3} \overrightarrow{p}_{\pi}^{i}$

\[\Rightarrow \text{Pseudo-TRF } \tau^* \]
LFV Search: $\tau \rightarrow l + \alpha$ (invisible)

- Idea: Search for a two body decay spectrum
- Signal will manifest as a peak in the tau momentum rest frame (TRF)
 - Challenge: Estimate TRF with missing ν_τ momentum
 - Using
 \[E_\tau \approx \frac{E_{CMS}}{2} \]
 \[\vec{p}_\tau \approx \vec{p}_{3\pi} = \sum_{i=1}^{3} \vec{p}_{\pi}^i \]

 \rightarrow Pseudo-TRF τ^*
- No signal region \rightarrow fit full spectrum with
 - SM expectation
 - SM + NP expectation
 \rightarrow compare likelihood of the two models
LFV Search: $\tau \rightarrow l + \alpha$ (invisible)

- Idea: search for a two body decay spectrum
- No signal region \rightarrow fit full spectrum with
 - SM expectation
 - SM + NP expectation
 - \rightarrow compare likelihood of the two models
- Sensitivity dependent on m_α
- Last results from
 - ARGUS (472 pb$^{-1}$) \rightarrow Belle II is competitive with early data
 - MARK III (9.4 pb$^{-1}$)
 - ~ 10 fb$^{-1}$
Lepton Flavour Violation Motivation

- We expect LFV in many Beyond the Standard Model (BSM) models
- For Tau at Belle II the “golden modes” are: $\tau \rightarrow \mu \gamma$
 $\tau \rightarrow lll$
- See talk from Alberto Martini

Lepton Flavour Violation (LFV) is highly suppressed in the Standard Model (SM), even if neutrino oscillation is taken. Many possible LFV decay modes related to the New Physics (NP) models have irreducible background contributions.

Introduction to tau LFV

Many extensions to Standard Model (BSM) models predict to enhance LFV to be experimentally unreachable. For Tau at Belle II the “golden modes” are:

1. $\tau \rightarrow \mu \gamma$
2. $\tau \rightarrow lll$

See talk from Alberto Martini

SM: $\mathcal{O}(10^{-49}) - \mathcal{O}(10^{-54})$

NP: $\mathcal{O}(10^{-7}) - \mathcal{O}(10^{-10})$
Conclusion

• The Tau has various interesting physics opportunities at Belle II:

 • Interesting results with early data possible
 • Potential observation of LFV in $\tau \rightarrow e + \alpha$
 • Exotic hadronic currents

 • With larger data set rich physics program with various interesting results
 • Improvements of SM Parameters
 • Potential measurements/verifications of SM parameters: $g - 2$
 • Potential verification of non SM CP violation
 • Potential observation of LFV in $\tau \rightarrow l\gamma$, $\tau \rightarrow lll$, ...
• Tau mass measured using an analysis of a 3x1 prong pion decay.

• Using a dataset of approximately 291 pb$^{-1}$ of early data.

• $m_\tau = (1776.4 \pm 4.8)$ MeV
Why Study the τ at Belle II?

- At e^+e^- machines there is a well understood production mechanism for τ
- SuperKEKB collider
 - Electron - Positron Asymmetric Accelerator
 - Runs at $\Upsilon(4S)$ resonance
 - Increased Integrated Luminosity: 1 ab^{-1}(KEKB) -> 50 ab^{-1}
What is the Tau particle?

- 3rd generation Lepton
 - Point like, fundamental
- \(M_\tau = 1776 \pm 0.12 \text{ MeV} \)
 - Can decay hadronically
- \(\tau_\tau = 290.3 \pm 0.5 \text{ fs} \)
Physics Prospects at Belle II

• The most anticipated results can be grouped in three sectors:

 • Lepton Flavour Violation (LFV)

 • Charged Parity (CP) violation

 • Standard Model (SM) measurements
LFV in τ Decays

- Decay with highest predicted branching ratio:
 $\tau \to \mu \gamma$

- Neutrino induced LFV in τ is expected at a level of:
 $B(\tau \to \mu \gamma) \sim 10^{-45}$

- Current Limit: $B(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$

- For 50 ab$^{-1}$ the sensitivity is expected to improve by a factor of 2

- Serious background (BG) from SM process: $\tau \to \mu \nu \nu$
LFV in τ Decays

- Interesting alternative:

$\tau \to lll$

 - Highly suppressed backgrounds.

 - Uncertainties scale with sample size.

- Current limits are $B(\tau \to \mu\mu\mu) = 2.1 \times 10^{-8}$

- Prospects for 50 ab$^{-1}$: $\mathcal{O}(10^{-10})$
Physics in the Early Phases of Belle II

• Performance studies

• 1 prong decays
 - $\tau \rightarrow \pi \nu$ for probing Lepton Universality

• 3 prong decays
 - $\tau \rightarrow \pi \pi \pi \nu$ for measurements of the mass, lifetime, …