

Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre

LFV searches at Belle II: $\tau \rightarrow 3\mu$ analysis expectations

On behalf of the Belle II collaboration

Alberto Martini University & INFN Roma Tre

58th International Winter Meeting on Nuclear Physics — 24 January 2020, Bormio, Italy

OUTLINE

- Introduction to Belle II
- LFV motivations in au sector
- $\tau \rightarrow 3\mu$ analysis strategy
- Expected results @ Belle II

The Belle II experiment

Main experiments at B-factories of the past:

- Belle (KEK Laboratory, Japan)
- BaBar (SLAC Laboratory, California)

Important results: confirmation of the CKM mechanism in the SM, CP violation observation in the B meson system etc..

The Belle II experiment

Main experiments at B-factories of the past:

- Belle (KEK Laboratory, Japan)
- BaBar (SLAC Laboratory, California)

Important results: confirmation of the CKM mechanism in the SM, CP violation observation in the B meson system etc..

Expected improvement of integrated luminosity of a factor ~50 w.r.t. Belle: 50 ab⁻¹

LFV motivations in au sector

Status of the au LFV

Lepton Flavor Violation (LFV) are allowed in various extensions of the Standard Model (SM) but it has never been observed

Many τ channels studies have been done at the B-factories

Belle II advantages

Analysis involving τ are challenging for most of the

experiments for different reasons:

- missing energy → difficult to reconstruct
- pions in the final state → lot of background sources from qcd

Belle II has several advantages to exploit

- Initial state energy is well defined (B-factory feature) → good measurement of missing momentum
- τ produced in pairs \rightarrow backgrounds reduction
- Clean environment \rightarrow background free wrt hadron machines
- High hermeticity of the detector \rightarrow advantages in studies with missing energies

au LFV searches

Search various decay modes:

$$\begin{aligned} &-\tau \to \ell \ell \ell \\ &-\tau \to \ell K_s, \Lambda h \\ &-\tau \to \ell V_0 (\to h h') \\ &-\tau \to \ell P^0 (\to \gamma \gamma) \\ &-\tau \to \ell h h' \\ &-\tau \to \ell \gamma \end{aligned}$$

τ LFV searches

Search various decay modes:

$$\begin{aligned} &-\tau \to \ell \ell \ell \\ &-\tau \to \ell K_s, \Lambda h \\ &-\tau \to \ell V_0 (\to h h') \\ &-\tau \to \ell P^0 (\to \gamma \gamma) \\ &-\tau \to \ell h h' \\ &-\tau \to \ell \gamma \end{aligned}$$

τ LFV searches

Analysis motivations: $\tau \rightarrow 3\mu$

Analysis motivations: $\tau \rightarrow 3\mu$

Experimental upper limits from **Belle** and **BaBar**:

- Belle: **2.1 x 10⁻⁸** @90% confidence level using $Ldt = 782 fb^{-1}$
- BaBar: **3.3 x 10**-8 @90% confidence level using $Ldt = 468 fb^{-1}$

... improved limits would further constrain the phase space of parameters of the models.

LFV

An observation of LFV in τ decays would be a clear signature of NP

LFV new physics models

BF limits on τ LFV decays allow to discriminate NP models!

Physics models	$B(au ightarrow \mu \gamma)$	$B(au ightarrow \mu \mu \mu)$
SM + v mixing	$10^{-49} \sim 10^{-52}$	$10^{-53} \sim 10^{-56} [1]$
SM+heavy Majorana v_R	10 ⁻⁹	10^{-10}
Non-universal Z'	10 ⁻⁹	10^{-8}
SUSY SO(10)	10 ⁻⁸	10^{-10}
mSUGRA + seesaw	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	10^{-10}	10^{-7}

Ref.

M. Blanke, et al., Charged Lepton Flavour Violation and (g – 2)µ in the Littlest Higgs Model with T-Parity: a clear Distinction from Supersymmetry, JHEP 0705, 013 (2007).

 $\tau \rightarrow 3\mu$ analysis strategy

Belle II advantages and decay description

Belle II advantages and decay description

Requirement adopted to reconstruct the decay:

• thrust: discriminate between spherical and boosted events;

Requirement adopted to reconstruct the decay:

- thrust: discriminate between spherical and boosted events;
- the two τ point to opposite **hemispheres**;

Requirement adopted to reconstruct the decay:

1p=1prong

- thrust: discriminate between spherical and boosted events;
- the two τ point to opposite **hemispheres**;
- Exactly 4 tracks coming nearby the IP;

Requirement adopted to reconstruct the decay:

- thrust: discriminate between spherical and boosted events;
- the two τ point to opposite **hemispheres**;
- Exactly **4 tracks** coming nearby the IP;

Belle I

• Signal tracks loosely identified as muons

Signal determination: signal region

 $\Delta E \equiv E_{\tau} - E_{beam}$

 $\sqrt{S/2}$

 $E_{3\mu}$

Signal identification in LFV τ analysis is usually done using a τ mass and ΔE selection

Signal determination: signal region

Signal determination: signal region

Background rejection: signal side

The most powerful discriminating variable between signal and background is the μID

µID algorithm in Belle II is expected to be better → possible analysis improvement

Background rejection: signal side

Usage of a different&optimised cut-based approach → improve analysis results

Momentum ranges:

- $P\mu < 0.7$ GeV: μ do not reach the μ detector (KLM)
- 0.7<Pµ<1 GeV: µ reach KLM but not many layers are crossed
- P μ >1 GeV: μ reach KLM and many layers are crossed

Background rejection: signal side

Usage of a different&optimised cut-based approach → improve analysis results

Momentum ranges:

- Pµ<0.7 GeV: μ do not reach the μ detector (KLM)
- 0.7<Pµ<1 GeV: μ reach KLM but not many layers are crossed
- Pµ>1 GeV: μ reach KLM and many layers are crossed

Background rejection: tag side

Signal-background discrimination depends on the tag-side track

In case of leptonic tag the missing energy on the tag side is high (2 neutrinos) and leptonID performances come into play

Background rejection: tag side

Signal-background discrimination depends on the tag-side track

In case of leptonic tag the missing energy on the tag side is high (2 neutrinos) and leptonID performances come into play

Background rejection: tag side

Signal-background discrimination depends on the tag-side track

In case of hadronic tag the missing energy on the tag side is lower (1 neutrino) and hadronID performances come into play

Expected results @ Belle II

Expected limits results

Expected limits results

Belle II is expected to improve the results of previous B-factory by a factor ~100

With a better analysis strategy the results can be even better... and they are coming soon!

Conclusions

- The Belle II experiment will be able to search for many LFV τ decays within the next years thanks to several advantages as a B-factory
- Several NP contributions are accessible by Belle II → the aim is to further improve existing limits and search for NP hints
- $\tau \rightarrow 3\mu$ channel is very promising (together with $\tau \rightarrow \mu\gamma$)
 - New optimised analysis is being performed @ Belle II
 - Improved µID algorithm is expected to improve previous results
- MC results are on the way & let's wait for more data to come!

Emergency slides!!

Signal region

The best way to identify the signal is to look at the τ mass and ΔE

µ identification

Muon identification process

Geant4 is used to extrapolate tracks reconstructed from the inner detectors by the tracking software

When the track reaches the KLM layers the μ ID algorithm provides the probability of the track to be a μ .

