BELLE2-NOTE-XX-YYYY-ZZZ
DRAFT Version 1.0

Performance of PID using Neural Network for MC12 and proc9 data

Jo Yamanouchi*
Nagoya University, Nagoya, Japan
Yuji Kato ${ }^{\dagger}$
KMI, Nagoya, Japan

Abstract
This note contains approved plots of the study about the performance of PID using Neural Network for MC12 and proc9 data. More details at: BELLE2-NOTE-TE-2020-005.

[^0]

FIG. 1: pion efficiency vs Kaon fake rate with $2.62 \mathrm{fb}^{-1}$ data sample and $5 \mathrm{fb}^{-1} \mathrm{MC} 12$ sample in each momentum region. These efficiency and fake rate are calculated by using the decay $D^{*+} \rightarrow$ $\left[D^{0} \rightarrow K^{-} \pi^{+}\right] \pi_{\text {slow }}^{+}$.Further detail is described in BELLE2-NOTE-TE-2020-005.

FIG. 2: The summary of the Kaon fake rate when pion efficiency is 90% (98% in the momentum less than $0.5 \mathrm{GeV} / \mathrm{c}$) for both Likelihood Ratio and Neural Network criteria, and also with both $2.62 \mathrm{fb}^{-1}$ data and $5 \mathrm{fb}^{-1} \mathrm{MC12}$ sample in each momentum region. Further detail is described in BELLE2-NOTE-TE-2020-005.

FIG. 3: The $M_{K \pi \pi_{s l o w}}-M_{K \pi}(=\Delta M)$ distribution for the Kaon candidates in the region greater than $2.5 \mathrm{GeV} / \mathrm{c}$ for both Likelihood Ratio and Neural Network criteria when pion efficiency is 90%. The number of the events contained in the peak corresponds to the misID K tracks. Further detail is described in BELLE2-NOTE-TE-2020-005.

FIG. 4: pion efficiency vs Kaon fake rate in each $\cos \theta$ region. Further detail is described in BELLE2-NOTE-TE-2020-005.

FIG. 5: The summary of the Kaon fake rate when pion efficiency is 90% in each $\cos \theta$ region.Further detail is described in BELLE2-NOTE-TE-2020-005.

[^0]: *Electronic address: yamanouchi@hepl.phys.nagoya-u.ac.jp
 ${ }^{\dagger}$ Electronic address: kato@hepl.phys.nagoya-u.ac.jp

