Beam-constrained vertexing for B physics at the Belle II Experiment -0.05Sourav Dey on behalf of the Belle II Collaboration Ж TEL AVIV אוניברסיטת

Introduction

- In time-dependent analyses, the key ingredient is the difference between the time of decay of two B mesons. Determining B decay vertex positions correctly is necessary
- In BaBar, B⁰ and B⁺ average flight distance ~20 μm in transverse plane and ~260 μm in Z direction
- The beamspot size was ~(120 x 5 x 8000 μm^3), similar in Belle
- To obtain the B decay vertex position correctly, a vertex fit with interaction point(ip) constraint was sufficient
- In Belle II, the beamspot is smaller ~(6 x 0.06 x 150 μm^3): thanks to nanobeam scheme. In addition, the tracking resolution is ~twice as good as at BaBar/Belle

• In Belle II, an ip-constrained fit is not sufficient anymore. We need a better constraint

Why we need a better constraint?

In Babar and Belle, The B decay vertices resided inside the beamspot region : an ip-constrained fit used to <u>e</u>+ give good result

In Belle II, beamspot is much smaller : The B decay vertices come out of the beamspot region

The B decay vertices are not inside the beam spot region anymore. An ip-constrained fit would give incorrect result. We indeed need a better constraint

e+

A new constraint: Btube

- Among two B mesons, we fully reconstruct one B (B_{rec})
- We propagate the B_{rec} track to the beamspot and apply a vertex fit. Result of this fit is a vertex which is the origin of both the B mesons.
- From four momentum conservation, we obtain the flight direction the other B.
- We then stretch the covariance matrix of the fully reconstructed B_{rec} vertex so that it has ~infinite size in the direction of the flight of the other B and use this tube-like object as the constraint of future other-B fits.

Procedure of creating the btube object and advantages of using it

Quality of fit using Btube: Event Generation

We generate some MC events. The fully reconstructed B and other B decays as follows

• We reconstruct the B_{rec} as

• The other B decays as

$$B_{other}^- \to J/\psi(\to \mu^+\mu^-)K^-\pi^+\pi^-$$

We generated 1M mc events

$$^{0}(\rightarrow K^{+}\pi^{-})\pi^{+}$$

Constructing the Btube

Constructing the Btube

After estimating direction of B_{other}, the Btube is constructed

Constructing the Btube

After the other B is fitted with the tube constraint (different y scale from previous slides)

Next slide shows quality of BB production vertex fit

Key ingredient of btube

Distinct cut-off in X and Z component : small beam spot size

Next slides test the quality of the Bother vertex fit

The tube constrained fit plots are most narrower

Other B decay vertex absolute residuals : comparison

Using the btube constraint yields a B_{other} decay vertex that is closest to the true decay position.

Bother decay vertex pulls : comparison

In ip-constrained fit, uncertainty in Y axis is too small to make a meaningful pull plot

Conclusion

- the true decay position.
- Various potential usages •reduce bias in time-dependent measurements , improve Δt measurement
 - Provide background rejection in various B decays, e.g.:

(Ihank you for your attention

• Using the btube constraint yields a B_{other} decay vertex that is closest to

$B \to D\tau\nu, B \to \tau\nu$ where $\tau \to 3\pi\nu, B \to K^{(*)}\nu\bar{\nu}, B \to K^{(*)}\tau^+\tau^-$

Backup

Bother decay vertex uncertainties : comparison

