

CPV in B decays: results at Belle and prospects at Belle 2

Chia-Ling Hsu (University of Sydney) on behalf of the Belle and Belle II Collaborations

Brookhaven Forum 2019 Particle Physics and Cosmology in the 2020's 25-27 Sep. 2019

Outline

- Introduction of CP violation
- Overview of Belle experiment
- Recent Belle results
 - $B^0 \to J/\psi \pi^0$
 - $B^0 \to \overline{D}{}^0 \pi^0$ and $B^+ \to \overline{D}{}^0 \pi^+$
- Overview of Belle2 experiment
- Latest results from Belle2
- Some prospects of CPV at Belle2
- Summary

CP Violation

• **Direct CP violation** CP violation in the decay

$$\mathcal{A}_{CP} \equiv \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}} = \frac{N_{\bar{B}} - N_B}{N_{\bar{B}} + N_B}$$

• CP violation in mixing difference in the probabilities between $P(B^0 \rightarrow \overline{B}^0) \neq P(\overline{B}^0 \rightarrow B^0)$

S

CP violation from interference between mixing/decay • $A_{f_{CP}}(\Delta t) \equiv \frac{\Gamma[\overline{B}(\Delta t)] - \Gamma[B(\Delta t)]}{\Gamma[\overline{B}(\Delta t)] + \Gamma[B(\Delta t)]}$ $= \underline{A}\cos(\Delta m\Delta t) + \underline{S}\sin(\Delta m\Delta t)$ \overline{c} Direct CPV Mixing-induced CPV J/ψ B^0 Vtd V_{cb}^{*} V_{tb}^* $\overline{\mathbf{d}}$ $\overline{\mathbf{B}}^{0}$ $\frown p$ d b V^{*}_{td} \overline{R}^0 \overline{K}^0

CPV in the SM

 CKM matrix describes the couplings between quarks of different generations via weak interaction

CPV is due to a complex phase in the quark mixing matrix

Unitary requires

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Belle Experiment

- Asymmetric energy e⁺e⁻ collider at KEK
- LER(e⁺): 3.5 GeV HER(e⁻): 8.0 GeV with crossing angle ±11 mrad
- The CM energy was set to be Y(4S) resonance to produce B meson pairs.
- 711 fb⁻¹ Y(4S) were collected at Belle All results presented here are based on the full Belle data set.

Integrated luminosity of B factories

Belle Experiment

- Asymmetric energy e⁺e⁻ collider at KEK
- LER(e⁺): 3.5 GeV HER(e⁻): 8.0 GeV with crossing angle ±11 mrad
- The CM energy was set to be Y(4S) resonance to produce B meson pairs.
- 711 fb⁻¹ Y(4S) were collected at Belle All results presented here are based on the full Belle data set.

Integrated luminosity of B factories

Analysis technique

• Kinematic variables are used to identify B decays:

• Continuum suppression:

Variables describing the event topology are combined in a multivariate analysis (Fisher Discriminant or Neural Network).

The information can be used to extract signals.

TCPV in $B^0 \to J/\psi \pi^0$

PRD98 112008 (2018)

- CP violation appears as a decay time difference.
- Tag-side determines its flavour, and is used to reconstruct the B_{tag} vertex.
 (ε_{eff}~30%)
- Sensitive to the CP violating angle ϕ_1
- In the absence of the penguin amplitude, the direct CP asymmetry A = 0 and the mixing-induced CP asymmetry S = -sin(2φ₁)
- $\sin(2\phi_1) = 0.699 \pm 0.017$ from b \rightarrow ccq (HFLAV)
- Compare the results with one in $B^0 \rightarrow J/\psi K_S$ to understand the contribution from penguin diagram.

Measure decay position instead of time

7

Measurement of $B^0 \rightarrow J/\psi \pi^0$

PRD98 112008 (2018)

$$Br(B^{0} \to J/\psi\pi^{0}) = \frac{N_{\text{sig}}}{\epsilon_{\text{sig}} \times N_{B\overline{B}} \times Br(J/\psi) \times Br(\pi^{0})}$$
$$= (1.62 \pm 0.11 \pm 0.06) \times 10^{-5}$$

Consistent with the world average $(1.76 \pm 0.16) \times 10^{-5}$ • most precise measurement to-date

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

- Extract from a fit to (Δt) • $\mathcal{S} = -0.59 \pm 0.19 \pm 0.03$ $\mathcal{A} = -0.15 \pm 0.14^{+0.04}_{-0.03}$
- Consistent with results from $B^0 \to J/\psi K_S$
- $3.2\sigma(*)$ away from **BaBar** measurement

Events / (0.0025 GeV/c²)

(a)

signal

J/ψK₂ + J/ψK₂ + J/ψλ Continuum

120

$B^0 \to \overline{D}{}^0 \pi^0$ And $B^+ \to \overline{D}{}^0 \pi^+$

Preliminary

- $b \rightarrow c \bar{u} d$ decay, no penguin contribution \Rightarrow large A_{CP} could hint at BSM physics
 - Time-dependent measurement $C(B^0 \rightarrow \overline{D}^{(*)}h^0) = (-2 \pm 8)\%$ Time independent measurement allows higher precision.
- $B^0 \to \overline{D}{}^0 \pi^0$ with notable large non-factorizable components
 - branching fraction >> "naive" factorisation predictions
 - Constraints for models of final state interactions
- Both commonly used control mode in experiments, allow for high-precision validations of techniques.
 - Important for Belle II precision frontier.
- Previous experimental results:

	dataset	${\mathcal B}$	$\mathcal{A}_{CP}(\%)$
$B^0 \to \overline{D}^0 \pi^0$ (Belle)	152×10^6	$(2.25\pm0.14\pm0.35)\times10^{-4}$	-
$B^0 \to \overline{D}^0 \pi^0 $ (BaBar)	454×10^6	$(2.69\pm 0.09\pm 0.13)\times 10^{-4}$	-
$B^+ \to \overline{D}^0 \pi^+$ (Belle)	$772 \times 10^6 / 275 \times 10^6$	$(4.34\pm0.10\pm0.23)\times10^{-3}$	-0.8 ± 0.8
$B^+ \to \overline{D}^0 \pi^+ $ (BaBar)	454×10^6	$(4.90\pm 0.07\pm 0.22)\times 10^{-3}$	-
$B^+ \to \overline{D}^0 \pi^+ \text{ (LHCb)}$	$1 f b^{-1}$	-	$-0.6 \pm 0.5 \pm 1.0$

$B^+ \rightarrow \overline{D}{}^0 \pi^+$ Result

$$Br(B^+ \to \overline{D}{}^0 \pi^+) = (4.53 \pm 0.02 \pm 0.14) \times 10^{-3}$$

 $A_{CP} = (0.19 \pm 0.36 \pm 0.57)\%$

Highest precision measurement for this decay

$B^0 \to \overline{D}{}^0 \pi^0$ **Result**

- 3D unbinned ML fit to M_{bc} , ΔE , and C'_{NN}.
 - Simultaneous fit to four datasets divided by Kaon charge

all signal BB continuum Rare B

$$Br(B^0 \to \overline{D}{}^0 \pi^0) = (2.68 \pm 0.06 \pm 0.09) \times 10^{-4}$$

 $A_{CP} = (0.10 \pm 2.05 \pm 1.22) \%$
First measurement in this channel

Highest precision measurement for this decay

SuperKEKB and Belle II

The final goal is an integrated luminosity of 50 ab-1 at Y(4S)

- 40 times larger peak luminosity than at KEKB
- Data taking started.
- Achieved luminosity of 1.2×10³⁴ cm⁻²s⁻¹
- Accumulated 6.5 fb⁻¹ data by this summer. (results shown today are from a subset of the data)

- Use frame of the Belle detector and ECL
- New vertex detector VXD (PXD + SVD)
- Improved particle identification for K/p/π separation
- Improved CDC tracking smaller cells and larger coverage
- Improved KLM for µ and K-long detection
- New electronics for ECL

SuperKEKB and Belle II

- 40 times larger peak luminosity than at KEKB
- Data taking started.
- Achieved luminosity of 1.2×10³⁴ cm⁻²s⁻¹
- Accumulated 6.5 fb⁻¹ data by this summer. (results shown today are from a subset of the data)

- Use frame of the Belle detector and ECL
- New vertex detector VXD (PXD + SVD)
- Improved particle identification for K/p/π separation
- Improved CDC tracking smaller cells and larger coverage
- Improved KLM for µ and K-long detection
- New electronics for ECL

Flavour tagging at Belle II

- Flavour tagging method improved with
 - improved vertex resolution
 - algorithm includes more modes
 - better particle identification reduced wrongly tagged rate
- Effective efficiency of flavour tagging is 37.2%.
 (~30% at Belle)
- More precise measurement for time-dep. analyses.

Categories	Targets for $\overline{B}{}^{0}$	Underlying decay modes
Electron	e^-	$\overline{R}^0 \to D^{*+} \overline{\nu}, \ell^-$
Intermediate Electron	e^+	$D \to D \to \ell c$
Muon	μ^{-}	$ ightarrow D^0 \pi^+$
Intermediate Muon	μ^+	$\rightarrow X K^{-}$
Kinetic Lepton	<i>l</i> -	
Intermediate Kinetic Leptor	n l ⁺	$\overline{B}{}^0 \to D^+ \pi^- (K^-)$
Kaon	K^{-}	K0 e+
Kaon-Pion	K^-, π^+	$\hookrightarrow K^* \nu_{\ell} \ell^*$
Slow Pion	π^+	
Maximum P*	l^-, π^-	$\overline{B}{}^0 \to \Lambda_c^+ X^-$
Fast-Slow-Correlated (FSC)) l^{-}, π^{+}	$ \Lambda \pi^+ $
Fast Hadron	π^-, K^-	
Lambda	Λ	$ ightarrow p \pi$

B2TiP book [10.1093/ptep/ptz106]

B mixing in Belle II

- Mixed-unmixed yield asymmetry as a function of Δt using semileptonic B decays $B^0 \rightarrow D^{*+} \ell \nu$, $\ell = e, \mu$
 - Dilepton tagging, only reconstruct a lepton (I_{tag}) on the tag side.
 - Vertex from Itag
 - Unmixed: opposite sign leptons Mixed: same-sign leptons
 - Good agreement between data and expectations.
 - Sufficient to observe the pattern of BB oscillations.

$A(|\Delta t|)$ - off-res data

Prospects for ϕ_1

- Golden mode for $sin(2\phi_1)$ measurement
- Theoretically and exp. precise
- A =0, S = $sin(2\phi_1)$
- Expected total uncertainty $\delta \phi_1 \lesssim 0.1^{\circ} @ 50 ab^{-1}$
- Re-discovery of $B^0 \rightarrow J/\psi K_S$ N = 26.9 ± 5.2 at Belle II
- Projection of CPV @50ab⁻¹

B2TiP book [10.1093/ptep/ptz106]

Prospects for ϕ_2

- sin(2 ϕ_2) can be measured from B→ππ/ρρ decays.
- $S_{\pi 0\pi 0}$ has never been measured
 - Decay vertex only from π⁰ Dalitz decay (π⁰→γee) or photon conversion(π⁰→γγ(e+e⁻)).
- B⁰→ππ/ρρ should reach σ(φ₂) ≈ 0.6°@50 ab⁻¹
 Reduce ambiguity for φ₂, breaking the degeneracy with B⁰→ππ.

	Value	Belle $@ 0.8 ab^{-1}$	Belle2 @ 50 ab^{-1}
$\mathcal{B}_{\pi^+\pi^-}$ [10 ⁻⁶]	5.04	$\pm 0.21 \pm 0.18$ [2]	$\pm 0.03 \pm 0.08$
$\mathcal{B}_{\pi^0\pi^0}$ [10 ⁻⁶]	1.31	$\pm 0.19 \pm 0.18$ [1]	$\pm 0.04 \pm 0.04$
$\mathcal{B}_{\pi^+\pi^0}^{\pi^-\pi^-}$ [10 ⁻⁶]	5.86	$\pm 0.26 \pm 0.38$ [2]	$\pm 0.03 \pm 0.09$
$C_{\pi^{+}\pi^{-}}$	-0.33	$\pm 0.06 \pm 0.03$ [3]	$\pm 0.01 \pm 0.03$
$S_{\pi^{+}\pi^{-}}^{n}$	-0.64	$\pm 0.08 \pm 0.03$ [3]	$\pm 0.01 \pm 0.01$
$\hat{C}_{\pi^0\pi^0}$	-0.14	$\pm 0.36 \pm 0.12$ [1]	$\pm 0.03 \pm 0.01$
$S_{\pi^{0}\pi^{0}}$	—	—	$\pm 0.29 \pm 0.03$

Summary

- Flavour physics at high luminosity B-factory offers good probe for testing SM and looking for NP
- Branching fractions and A_{CP} of $B \rightarrow D^0\pi$ is measured. A_{CP} is consistent with the SM prediction.

- Belle II physics run started
- More precise measurements will be provided by Belle II in the coming years!

Backup

Continuum Suppression

- Continuum background $e^+e^- \rightarrow q\bar{q}(u, d, s, c)$
 - Dominant background
 - Different event topology from signal

 Using modified Fox-Wolfram moments expand events in terms of Legendre polynomials

$$H_l = \sum_{i,j=1}^{N} \frac{|\vec{p_i}| |\vec{p_j}|}{s} P_l \left(\cos \Omega_{ij}\right)$$

- i, j = particles
- Information combining with other shape variables are used to suppress the continuum background.

$B \to K\pi$ at Belle II

• Measurements of DCPV in $B^+ \to K^+ \pi^0$ found to be different than the same quantity in $B^0 \to K^+ \pi^-$

$\mathcal{A}_{K^+\pi^0} - \mathcal{A}_{K^+\pi^-} = 0.112 \pm 0.027 \pm 0.007 \ (4\sigma)$

- Combine with other measurements and with the larger Belle II dataset, strong interaction effects can be controlled and the validity of the SM can be tested in a model-independent way.
- Isospin sum rule can be presented as a band in the $\mathcal{A}_{K^0\pi^0}$ vs. $\mathcal{A}_{K^+\pi^0}$ plane.

Most demanding measurement is $K^0\pi^0$ final state. With Belle II, the uncertainty on A_{CP} from time-dep. analyses is expected to reach $\sim 4\% \Rightarrow$ sufficient for NP studies

$B \to K\pi$ at Belle II

- A 2D[A_{Kπ}, I_{Kπ}] scan for different Belle II scenarios.
 - Asymmetry of K⁰/ K
 ⁰ interactions in material (σ_{ired} ≈ 0.2%)
 Phys. Rev. D 84, 111501 (2011)
 - Assume that the errors are not correlated.
 - Additionally the systematic uncertainties are conservatively provided and they are still smaller than the statistical errors.

Projections for the	$B \rightarrow B$	$K\pi$ isospin	sum rule para	ameter, $I_{K\pi}$,	at the B	elle measured	central value.
J				/ 11///			

Scenario		\mathcal{A}_{K^0}	$I_{K\pi}$	
	Value	Stat.	(Red., Irred.)	
Belle	0.14	0.13	(0.06, 0.02)	-0.27 ± 0.14
Belle + $B \rightarrow K^0 \pi^0$ at Belle II 5 ab ⁻¹		0.05	(0.02, 0.02)	-0.27 ± 0.07
Belle II 50 ab^{-1}		0.01	(0.01, 0.02)	-0.27 ± 0.03