Dark Matter searches in e^+e^- annihilations & first results from Belle II

Next Frontiers in the Search for Dark Matter

Nataliia Kovalchuk
(nataliia.kovalchuk@desy.de)

GGI, Florence, 23.-27.09.2019
Outline

Dark Matter searches in e+e- annihilations

- Z' → invisible
- Y(1S) → γ invisible
- Y(1S) → invisible
- Invisible Dark photon A' → invisible
- Visible Dark photon A' → l+l-
- Axion Like Particles (ALPs)
- ALP-strahlung
- Higgs-strahlung

in this talk
Dark Matter searches in e^+e^- annihilations

Collider Method: DM production at collider, model dependent
- Mainly operating at $\sqrt{s} = 10.58$ GeV
- Clean environment
- Known initial energy of the system

at the KEKB collider
KEK, Japan

at the PEP II collider
SLAC, USA
SuperKEKB

Next generation B-factory

40x KEKB integrated luminosity: 50 ab⁻¹
- from upgraded ring
 ×2 ↑ beam current
- from final focus magnets
 × 1/20 ↓ β* vertical beta-function at the IP
large crossing angle (83 mrad)
Belle II

The detector

- **Electromagnetic calorimeter**
 - CsI(Tl) crystals... new readout

- **1.5T magnet**

- **K_L** and muon (KLM) detectors
 - Resistive plate chambers + (new) scintillator w/ iron flux return

- **Dedicated triggers for Dark Matter searches**

- **e^+e^- collision**
 - @ $\sqrt{s} = 10.58$ GeV

- **Drift chamber tracking**
 - wires in 50:50 He:C_2H_6

- **7 GeV e^-**

- **4 GeV e^+**
Data schedule

- 2018: 500 pb\(^{-1}\).
 ▶ Commissioning data.
- 2019: \(~6.5\) fb\(^{-1}\) delivered.
- Expected in 2027: 50 ab\(^{-1}\).
Dark Matter searches at B-factories

\[e^+e^- \text{collisions at } \sqrt{s} = 10.58 \text{ GeV} \]

Light dark sector

Key:
- Observed
- Theories

QCD Axion

B-factories

WIMPs

Hidden / dark sector

Black holes

Higgs

G_{\mu} -2

Mass scale

DESY. | Dark Matter searches in e+e- annihilations and first results from Belle II | Nataliia Kovalchuk |
Phenomenology

Renormalizable way of Dark Matter coupling to the SM

Vector portal → Dark photon

\[\mathcal{L} \supset e V_\mu J^\mu_{SM} \]

Scalar portal (Higgs portal) → Dark Higgs/ Scalars

\[\mathcal{L} \supset \lambda S^2 (H^\dagger H) \]

Pseudoscalar portal → Axion-Like Particle

dim 5 axion portal

\[\mathcal{L} \supset \frac{\partial_\mu P}{f_A} \bar{f} \gamma^\mu \gamma^5 f \]

Neutrino portal → Sterile Neutrinos

\[N (LH) \]
Phenomenology

Renormalizable way of Dark Matter coupling to the SM

<table>
<thead>
<tr>
<th>Dark sector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>?</td>
</tr>
</tbody>
</table>

Dark sector

SM

<table>
<thead>
<tr>
<th>g_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>mediator</td>
</tr>
<tr>
<td>g_X</td>
</tr>
</tbody>
</table>

Visible

Invisible

Off-shell

Long-lived

SM

Dark matter mass, m_{DM}

Visible

m_{DM} = m_{Med} / 2

2m_e

Mediator mass, m_{med.}

SM

Portal

m_{DM} = m_{Med} / 2
\(Y(1S) \rightarrow \gamma \) invisible

Theory

- \(M_{\text{med.}} \) is very large \(\rightarrow \) can not be produced on-shell in B-factories
- DM particle is kinematically accessible

Limits on the branching fraction for \(Y(1S) \) decays

- Suppression scale of the effective operator parametrizing interactions DM with quarks

BII – expected sensitivity for Belle II

\[
\begin{align*}
\text{S1 & S2: Fermi} & & \text{S1 & S2: BII} \\
\text{F2 & F4: Fermi} & & \text{F2 & F4: BII} \\
\text{F1: ATLAS MonoJet} & & \text{F1 & F3: BII}
\end{align*}
\]
Y(1S) → γ invisible

Analysis

Y(2S) → Y(1S) π⁺π⁻

Bottonium transition with two soft pions

Dipion recoil mass:

\[M_{\text{rec}}^2 = s + M_{\pi\pi}^2 - 2\sqrt{s} E^*_{\pi\pi}, \]

with \(M_{\pi\pi} \) is \([2M_\pi, (M_{Y(2S)} - M_{Y(1S)})]\)

Mass scan point with \(M_{\text{med.}} = 2.946 \text{ Gev/c}^2 \)

Background estimation:

Continuum background

- studied with an off-resonance data set
- do not observe any significant peaking backgrounds

Y(1S) decay background (irreducible)

- Y(1S)→ ll (leptons) do not produce a peak at \(E_\gamma \) but at \(M_{\text{rec}} \)
- Y(1S)→ γ hh (hadrons) produce a peak at \(E_\gamma \) and \(M_{\text{rec}} \)
$\Upsilon(1S) \rightarrow \gamma$ invisible

Physics reach

Set limits on the branching fraction

conversion into a WIMP-nucleon scattering σ limit

Used data:
Belle, 25 fb$^{-1}$
BaBar, 14.4 fb$^{-1}$
Dark photon

Theory

- Massive vector particle A', mixes with the SM photon:
 \[\mathcal{L} \supset \epsilon g_D A'_\mu J_{\text{EM}}^\mu \]

- Can decay to two leptons $A' \rightarrow l^+ l^-$
 Experimentally: search for a narrow peak in $l^+ l^-$ mass spectrum on top of large BG

\begin{align*}
\text{MadGraph} \\
g_\chi = g_e \\
M_\chi = 1 \text{ MeV/c}^2 \\
\epsilon = 1
\end{align*}
Dark photon
Theory

- Massive vector particle A', mixes with the SM photon:
 \begin{equation}
 \mathcal{L} \supset \epsilon g_D A'_{\mu} J_{EM}^{\mu}
 \end{equation}

- Can decay to two leptons $A' \rightarrow l^+ l^-$
 Experimentally: search for a narrow peak in $l^+ l^-$ mass spectrum on top of large BG

- Can decay directly to light dark matter $A' \rightarrow \chi_1 \chi_2$
 Experimentally: negligible interaction with detector

- Experimentalist’s trick: require ISR photon
 \begin{equation}
 E_{\gamma_{\text{ISR}}} = \frac{s - m_{A'}^2}{2 \sqrt{s}}
 \end{equation}

Single photon trigger is required not available at Belle, and only 10% BaBar data
Dark photon

Analysis

- **First analysis:** \(ee \rightarrow \gamma A', A' \rightarrow \chi_1\chi_2 \)
- **One photon (no tracks, no other good photon clusters)**
- Bump search in recoil mass spectrum

Main background sources:

- \(ee \rightarrow ee\gamma(\gamma) \) and \(ee \rightarrow \gamma\gamma(\gamma) \)

- \(ee \rightarrow \gamma\gamma \), 1 \(\gamma \) in endcap gaps
- \(ee \rightarrow \gamma\gamma\gamma \), 1 \(\gamma \) in endcap gap, 1 \(\gamma \) out of ECL acc.

- \(ee \rightarrow ee\gamma \), both leptons out of tracking acceptance

Belle II Simulation

- \(E_{e\gamma} \) in CMS (GeV)
- \(\theta_{\text{Lab}} \) (deg)
- Events/bin

Event Details

- \(ee \rightarrow \gamma\gamma \), 1 \(\gamma \) in ECL 90° gap, 1 \(\gamma \) out of ECL acc.
Dark photon

Physics reach

At **Belle II**:
- single photon trigger
- use KLM to detect escaped photons

The **Belle II** Physics book:
- BaBar 53 fb$^{-1}$ analysis: [PRL.119.131804](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.131804)
Z’ to invisible: $L_\mu - L_\tau$ model

Theory

- “Dark photon” → Z' if non minimal
- Search is performed in flavour violating and flavour conserving modes
- Mediator coupling to muons and taus, not electrons ($L_\mu - L_\tau$)
- Abelian symmetry
- $Z' \rightarrow$ invisible:
 calculate a branching fraction and compare to theoretical prediction to find an indication of invisible DM

\[
\sigma \sim g'^2 (1 - M_{Z'}/\sqrt{s})
\]

Computed with MadGraph5
Z’ to invisible: \(L_\mu - L_\tau \) model

Analysis

- \(ee \rightarrow \mu\mu Z' (Z' \rightarrow \text{invisible}) \)
- Bump hunt in recoil mass against \(\mu\mu \). Nothing in the rest of the event
- Kinematic fit of muons \(\rightarrow \) to select events recoil energy point to the barrel (best hermiticity)
- Dimuon trigger

Main background sources:
- \(ee \rightarrow \mu\mu(\gamma) \)
- \(ee \rightarrow \tau\tau(\gamma) \)
- \(ee \rightarrow ee\mu\mu \)

\[
M_{rec} = s + M_{\mu\mu}^2 - 2\sqrt{s}E^*_{\mu\mu}
\]

Simulated and reconstructed \(M_{Z'} \) in range \((0.1 – 10) \text{ GeV/c}^2\)
Z’ to invisible: \(L_\mu - L_\tau \) model

Physics reach

Belle II Preliminary - 2018

\[
\int Ldt = 276 \text{ pb}^{-1}
\]

\[L_\mu L_\tau \]

\[L_\mu L_\tau, \text{BF}(Z \rightarrow \chi \bar{\chi}) = 1 \]

\[(g-2)_\mu \pm 2\sigma \]

\[M_Z [\text{GeV/c}^2] \]

Belle II MC

Belle II 50 ab\(^{-1}\) projection

\[\mu_{g-2} \pm 2\sigma \]

\[M_Z [\text{GeV/c}^2] \]
Axion Like Particles (ALPs)

Theory

- Pseudo-scalar coupling to gauge bosons
- After EWSB:
 \[\mathcal{L} \supset - \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \]
- QED case: the coupling and the mass of the ALPs are independent
- ALPs at Belle II:
 - light ALPs \(m_a \approx 1 \text{ MeV}/c^2 \),
 \[g_{a\gamma\gamma} \approx (10^{-5} - 10^{-6}) \text{ GeV}^{-1} \]
 - heavier ALPs \(m_a \approx (0.1 - 10) \) GeV/c^2
 \[\text{Invisible: decays outside of the detector} \]
Axion Like Particles (ALPs)

Analysis

At higher masses, $m_a > 200 \text{ MeV}/c^2$

- Three photons within tracking acceptance: add up to beam energy
- Zero tracks
- Bump on di-photon mass

- The SM background: $ee \rightarrow \gamma\gamma$ (γ)
 - Does not peak in $\gamma\gamma$
 - Not a 2-body system: use angles & kinematics to suppress

At lower masses

- Two photons from ALPs are boosted: a cluster is reconstructed with one local maximum

Use the same technique to reconstruct merged π^0 meson

Searches for invisible and visible ALPs decays veto this region
Axion Like Particles (ALPs)

Physics reach

Belle II expected sensitivity

No systematics. Only (dominant) ee → γγ background included 135fb⁻¹ assumes no γγ trigger veto in the barrel

$g_{\alpha\gamma Z} = 0$
Summary

- Dark sector physics at e^+e^- collider \rightarrow excellent prospects even with very early data
- Only some of results are shown in this talk
- $\Upsilon(1S) \rightarrow \gamma$ invisible: more data are needed
- Single γ: dark photon decaying to stable dark matter
 Can improve limits from BaBar already with 20 fb^{-1}
- $\mu\mu Z'$: $L_\mu - L_\tau$ dark vector decaying to stable dark matter
 First Z' \rightarrow invisible analysis with early Belle II data
- 3γ: ALP-strahlung, experimentally clean
 Can perform analysis with calibration collisions data (~500 pb^{-1} 2018)
- ~ 50 ab^{-1} of Belle II data is expected to be collected \rightarrow unique opportunity to study Dark Matter in the regions not covered by other experiments
Belle II

Dark Matter searches in e^+e^- annihilations and first results from Belle II | Nataliia Kovalchuk |