

Belle II first results and prospects for LFU tests

A. Bożek, IFJ PAN Kraków

for the Belle II Collaboration

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20191 / 40

B decays and LFV/LFU

• Semileptonic decays $B \to X \ell v$

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20192 / 40

Current status of LFV/LFU in B-factories

・ロト・日本・日本・日本・日本・今日を

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20193 / 40

Belle: Semileptonic decays R_D and R_{D^*}

Exp.	Tag method	τ^- decays	Observables	Fit variables
Belle PRL 99, 191807 (2007)	Hadronic Inc.	$e^- v_\tau \bar{v}_e, \pi v_\tau$	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau)$	$M_{\rm bc}^{\rm comp}$
Belle PRD 82, 072005 (2010)	Hadronic Inc.	$\ell^- v_\tau \bar{v}_\ell, \pi v_\tau$	$\mathcal{B}(B^-\to D^{(*)0}\tau^-\bar\nu_\tau)$	$M_{\rm bc}^{\rm comp}$ and p_{D^0}
Belle PRD 92, 072014 (2015)	Hadronic	$\ell^- v_\tau \bar{v}_\ell$	$R_D, R_{D^*}, q^2, p_\ell^* $	$M_{\rm miss}^2$ and O_{NB}^{\dagger}
Belle PRL 118, 211801 (2017)	Hadronic	$h^- v_{\tau}$	$R_{D^*}, P_{\tau}(D^*)$	$E_{\rm ECL}$ and $\cos \theta_{\rm hel}$
Belle PRD 94, 072007 (2016)	Semileptonic	$\ell^- v_\tau \bar{v}_\ell$	$R_{D^*}, p_{\ell}^* p_{D^*}^* $	E_{ECL} and O'_{NB} ‡
Belle preliminary conf-1902	Semileptonic FEI	$\ell^- \nu_{ au} \overline{\nu}_{\ell}$	R_D, R_{D^*}	E_{ECL} and O_{BDT}

- · experimental method depends on what we measure
 - tagging,
 - signal reconstruction (au decay channels)
- $q^2 \equiv M_W^2$ effective mass squared of the au
 u system
- $R_D = \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)}$
- $R_D^* = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \ell \nu)}$

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20194 / 40

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

R_D and R_{D^*} current status

- New perliminary semileptonic tag based measurement of R_D, R^{*}_D is consistent with the old result, more precise.
- Recent measurements from Belle and LHCb reduce tensions with SM
- Combined Belle result is consistent with SM at 2σ level

Andrzej Bożek IFJ PAN, Kraków Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20195 / 40

R_D and R_{D^*} current status

- New perliminary semileptonic tag based measurement of R_D, R_D^* is consistent with the old result, more precise.
- Recent measurements from Belle and LHCb reduce tensions with SM
- Combined Belle result is consistent with SM at 2σ level

The dynamics of these decays can be probed with differential distributions q^2 , τ and D^* polarizations ...

Andrzej Bożek IFJ PAN, Kraków Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20195 / 40

Recent R_K and R_{K^*}

- Recent preliminary results for both R_K and R_K^* from Belle (arXiv:1904.02440)
- Belle measured R^{*+}_K and R_{K_S} for first time,
- Allow measurement of CP averaged isospin asymmetry

$$\mathbf{A}_{|} = \frac{(\tau_{B+}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \rightarrow K^{0}\ell\ell) - \mathcal{B}(B^{+} \rightarrow K^{+}\ell\ell)}{(\tau_{B+}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \rightarrow K^{0}\ell\ell) + \mathcal{B}(B^{+} \rightarrow K^{+}\ell\ell)}$$

New measurements are closer to the SM (and consistent with LHCb)

Andrzej Bożek IFJ PAN, Kraków Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20196 / 40

< □ > < 同 >

A B F A B F

Belle II first results

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20197 / 40

The Belle II experiment

- The Belle II experiment is an upgrade of Belle detector
- Electron-positron collisions
- $E_{\rm CM} \approx m_{\Upsilon(4s)}$
- $\Upsilon(4s) \rightarrow \overline{B}B$, quantum-entangled
- Particulary well adapted to study B decays with missing energy; especially with multiple ν in final state
- Target plan 55 billion B meson pairs decays recorded
- Sensitivity in *B*, charm and τ to O(10⁻⁹) – O(10⁻¹¹) branching fractions

イロト イポト イヨト イヨト

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20198 / 40

$\label{eq:superKekb} \begin{array}{c} SuperKekb/Belle \ II \ Luminosity \ profile \\ {\tt Belle/Kekb} \ {\tt recorded} \approx 1000 \ {\tt fb^{-1}} \end{array}$

- Beam currents only a factor of two higher then KEKB (≈ PEPII)
- "nano-beams" are the key; vertical beam size is 50nm at the IP

Andrzej Bożek IFJ PAN, Kraków Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20199 / 40

Spring 2019, First Physics Run with full Detector

- only 2 months of collisions
- L(peak)≈
 5.5 × 10³³/cm²/s

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20190 / 40

Spring 2019, First Physics Run with full Detector

- only 2 months of collisions
- L(peak) \approx 5.5 × 10³³/cm²/s
- L(SuperKEKB)≈
 1.2 × 10³⁴/cm²/s
- Luminosity comparable to PEP-II records
- background to large to turn Belle II

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20190 / 40

< □ > < 同 > < 回 > < 回

B meson counting

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20191 / 40

Rediscovery of $B \rightarrow D^{(*)}\pi^{\pm}.\rho^{\pm} \mathcal{B} \approx$ few 0.1%

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20192 / 40

Rediscovery of $B^0 ightarrow D^{*-} \ell^+ u_\ell \ \mathcal{B} \approx 11\%$

Particle	Selection
Tracks	IP in $z < 2$ cm
Tracks	IP in r- ϕ plane $<$ 0.5 cm
ℓ	$1.2 < p_\ell^* < 2.4 \; { m GeV}/c$
е	Electron likelihood > 0.85
μ	Muon likelihood > 0.9
slow π	$p_\pi^* < 0.5~{ m GeV}/c$
D^0	$1.85 < M_D < 1.88~{ m GeV}/c^2$
D^*	$0.144 < M_{D^*} - M_D < 0.148 \text{ GeV}/c^2$
D^*	$p_{D^*} < 2.5 \text{ GeV}/c$

$$m_{\text{miss}}^2 = \left(\left(\frac{1}{2} E_{\text{beam}}, 0, 0, 0 \right) - p_{D^*\ell}^* \right)^2 \approx p_{\nu}^2 = 0 \,\text{GeV}^2$$

$$\cos \theta_{B,D^{*}\ell} = \frac{2E_B E_{D^{*}\ell} - m_B^2 - m_{D^{*}\ell}^2}{2 \, |\vec{p}_B^*| \, |\vec{p}_{D^{*}\ell}|}$$

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20193 / 40

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20194 / 40

Hadronic Tagging with the Full Event Interpretation

$$p_{\nu} = \left(p_{e^+e^-} - p_{B_{\text{tag}}} - p_{\ell} \right)$$

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20195 / 40

Hadronic Tagging with the Full Event Interpretation

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20196 / 40

イロン イロン イヨン イヨン

Hadronic Tagging with the Full Event Interpretation

Thomas Keck et al, arXiv:1807.08680 Published in Computing and Software for Big Science

		FEI	old algorithms		
	B^{\pm}	B^0		B^{\pm}	B^0
Hadronic			Hadronic		
FEI with FR channels	0.53~%	0.33 %	FR	0.28 %	0.18 %
FEI	0.76 %	0.46 %	SER	0.4 %	0.2~%
Semilept	onic		Semileptonic		
FEI	1.80 %	2.04 %	FR	0.31 %	0.34 %
			SER	0.3 %	0.6 %

Significant improvement of performance

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20197 / 40

Full Event Interpreter (FEI) at Belle II

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20198 / 40

Belle II prospects for LFU tests

・ロト・日本・日本・日本・日本・今日を

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20199 / 40

D^* and au polarizations in $B o D^* au u_{ au}$

Observables that can give a better insight into the dynamics of $b \to c\tau\nu$ transitions: q^2 , longitudinal and transverse polarizations of τ and D^* . So far experiments measured q^2 distributions (and lepton spectra) Belle measured longitudinal polarizations:

•
$$P_{\tau}(D^*) = \frac{\Gamma^+(D^*) - \Gamma^-(D^*)}{\Gamma^+(D^*) + \Gamma^-(D^*)}$$
 $\Gamma^{\pm}(D^*)$: decay rate with τ helicity $\lambda_{\tau} = \pm \frac{1}{2}$
• $F_L^{D^*} = \frac{\Gamma(D_L^*)}{\Gamma(D_L^*) + \Gamma(D_T^*)}$ $\Gamma(D_{L(T)}^*)$: decay rate of longitudinally (transversely) polarized D^*

・ロ・・雪・・言・・言・ 言 ぐのの

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20120 / 40

$B ightarrow ar{D}^* au^- u_{ au}$ distribution : au polarisation

Pioneered by Belle Phys. Rev. Lett. **118**, 211801 (2017); Phys. Rev. D **97**, 012004 (2018)

Measured from the two body semileptonic $\tau~(\to \pi\nu, \to \rho\nu$) decays -experimentally challenging

Andrzej Bożek IFJ PAN, Kraków Belle II first results and prospects for LFU tests, Puerto de la Cruz, 🗐 23-28, 20191 / 40

 $B \rightarrow \bar{D}^* \tau^- \nu_{\tau} \text{ distribution : } D^* \text{ polarisation}$ $\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta_{\text{hel}}(D^*)} = \frac{3}{4} [2F_L^{D^*} \cos^2(\theta_{\text{hel}}(D^*)) + (1 - F_L^{D^*}) \sin^2(\theta_{\text{hel}}(D^*))]$ All τ decays are usable.

Preliminary Belle result arXiv:1903.03102

 $\begin{array}{l} \text{Large efficiency variation} \to \text{experimentally} \\ & \text{dificult} \\ \text{Belle: } F_L^{D^*} = 0.60 \pm 0.08(\text{stat}) \pm 0.04(\text{sys}) \\ F_L^{D^*} = 0.60 \pm 0.08(\text{stat.}) \pm 0.035(\text{syst.}) \\ \text{SM: } F_L^{D^*} = 0.46 \pm 0.03 \text{ (Phys. Rev. D 95,} \\ & \text{115038 (2017), A.K. Alok, et al)} (1.5 \ \sigma) \\ \text{SM: } F_L^{D^*} = 0.441 \pm 0.006 \text{ (arXiv:1808.03565,} \\ & \text{Z-R. Huang, et al)} (1.8 \ \sigma) \\ \end{array}$

(3)

Expected number of events for $F_L^{D^*}$ in full data set is ~ 15000 .

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20192 / 40

Prospects for $B \rightarrow D^{(*)} \tau \nu$ at Belle II

composition of the systematic anechantics in each bene analysis								
	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)				
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}				
MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}\%$				
$B \to D^{**} \ell \nu_{\ell}$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%				
Hadronic B	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}\%$				
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%				
Total	7.1%	5.2%	$^{+3.4}_{-3.5}\%$	$^{+10.0}_{-9.0}\%$				
			"The Belle II Dhusi	a Real/ arViu/1909 10FC				

Composition of the systematic uncertainties in each Belle analysis

"The Belle II Physics Book", arXiv:1808.10567

- The uncertainty due to MC statistic is reducible
 - MC statistic affects the estimation of the reconstruction efficiency, understanding of the cross-feed components and PDFs for the fit
- Efficiency is model dependent: *q*² and others distributions with used model. Belle II will reduce model dependency by measureing differential distribution.
- The uncertainties from B(B → D^{**}ℓν_ℓ), D^{**} decays and hadronic B decays have to be reduced.
 - Need for dedicated measurements of B → D^{**}ℓν_ℓ and hadronic B decays with a large data sample.

Andrzej Bożek IFJ PAN, Kraków Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20123 / 40

Testing lepton flavor universality with leptonic *B* decays

Very clean theoretically, hard experimentally SM is helicity suppressed Sensitive to NP contribution (charged Higgs)

$$R^{\tau\mu} = \frac{\Gamma(B \to \mu v)}{\Gamma(B \to \tau v)}$$
$$R^{\tau e} = \frac{\Gamma(B \to e v)}{\Gamma(B \to \tau v)}$$
$$R^{\tau \pi} = \frac{\Gamma(B \to \tau v)}{\Gamma(B \to \pi l v)}$$

$$\mathcal{B}(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

SM test in B measurement

Belle II Full simulation with expected					
background conditions (hadronic tags only)					
S.L. tag expected to have similar sensitivity					

イロト イポト イヨト イヨト

Extrapolation of Belle Analysis

Mode	SM BR	Current meas.	Belle II 5 ab-1	Belle II 50 ab-1
τν	10-4	20% uncertainty	15%	6% <
μν	10 ⁻⁶	40% uncertainty*	20%	7%
ev	10-11	Beyond reach	-	-

* arxiv:1712.04123 2.4 excess [2.9,10.7]×10-7 at 90% C.L.

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 2019/4 / 40

Semileptonic B decays with $b \rightarrow s \ell^+ \ell^-$ transitions

- reconstruction of exclusive decays is very straight forward and well established at Belle
 - improvement in reconstruction possible at Belle II
- Belle II have tools (FEI) for fully inclusive measurement; unique position for measurement with different systematic errors.
- \mathcal{B} and q^2 distributions are already systematic dominated at LHCb
 - still we can test the deficit of muon modes observed by LHCb
 - and recheck the region of higher charmonium contributions of $q^2 > 14.4 Gev^2$
- Belle measurement of $A_{|}(B \rightarrow K \ell^+ \ell^-)$ lead to isospin violation check
- angular analysis is avery important topic at Belle II

New Physics in $b \rightarrow s \ell^+ \ell^-$

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20196 / 40

Prospects on LFU

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20197 / 40

Summary

- Belle II experiment has started physics runs and expect to accumulate \approx 50 times larger data sample then previous B-factories, which will be crucial for rare and decays with missing energy
- Belle II is an excellent detector for lepton universality studies, especially for the channels involving missing energy. Same is true for *ee* vs $\mu\mu$ channels, due to similar reconstruction efficiency.
- The $B \to D^{(*)} \ell \nu$ channels at Belle II are statistically limited, however for $R_{D^{(*)}}$ better modeling of $B \to D^{**} \ell \nu$ and generaly hadronic *B* decays is necessary.
- Belle II ML-based full event interpretation tagging method improves *B* meson tagging compared to Belle.

イロト 不得 トイヨト イヨト 二日

Backup

・ロト・西ト・ヨト・ヨー うへつ

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20199 / 40

Kinematic variables describing $B
ightarrow ar{D}^{(*)} au^-
u_ au$

 $q^2 \equiv M_W^2$ - effective mass squared of the $\tau \nu$ system

 θ_{τ} - angle between $\tau\&B$ in W^* rest frame

 χ - angle between the $\tau\nu$ and ${\it D}^*$ decay planes

 $\theta_{hel}(D^*)$ - angle between D&B in D^* rest frame

 $\theta_{hel}(\tau)$ - angle between π & direction opposite to W^* in τ rest frame

$$\frac{d\Gamma}{d\cos\theta_{hel}(\tau)} = \frac{1}{2} (1 + \alpha P_{\tau} \cos\theta_{hel}(\tau))$$

$$\alpha = 1.0 \text{ for } \tau \to \pi\nu; \quad \alpha = 0.45 \text{ for } \tau \to \rho\nu$$

$$\frac{d\Gamma}{d\cos\theta_{hel}(D^*)} = \frac{3}{4} [2F_L^{D^*} \cos^2(\theta_{hel}(D^*)) + (1 - F_L^{D^*}) \sin^2(\theta_{hel}(D^*))]$$

 q^2 , $\cos \theta_{hel}(\tau)$ and $\cos \theta_{hel}(D^*)$ can be reconstructed at B-factories with hadronic decays of B_{tag}

Testing lepton flavor universality in $b \rightarrow u$ semileptonic decays

$$R(\pi) = rac{\mathcal{B}(B o \pi au^+
u_ au)}{\mathcal{B}(B o \pi \ell^+
u_ au)}$$

Feasibility already demonstrated with Belle. No statistically significant signal was observed $\mathcal{B}(B \to \pi \tau^+ \nu_\tau) < 2.5 \times 10^{-4}$ Phys. Rev. Lett. 118, 211801 (2017) Central value: $\mathcal{B}(B \to \pi \tau^+ \nu_\tau) =$ $(1.52 \pm 0.72 \pm 0.13) \times 10^{-4}$ Belle II extrapolation of uncertainty $R^{5ab^{-1}} \pm 0.23$ or $R^{50ab^{-1}} \pm 0.09$

イロト イポト イヨト イヨト

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20191 / 40

General Outlook for next years

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20192 / 40

Lepton Flavor Violation in τ Decays at Belle II

Super B-Factory, and τ factory too!

- Super B-Factory, and τ factory too: $\sigma(e+e- \rightarrow \Upsilon(4s)) = 1.05 \text{ nb}$ $\sigma(e+e- \rightarrow \tau\tau) = 0.92 \text{ nb}$
- Charged LPV process occur oscillations in loops. In SM, small rate is immeasurable (10^{-49~}~10⁻⁵⁴) for all LFV decays. ^γξ

$$B(l_1 o l_2 \gamma) = rac{3lpha}{32\pi} |\sum_{i=2,3} U^*_{l_1,i} U_{l_2,i} rac{\Delta m^2_{i_1}}{M^2_W}|^2$$
 .

Charged LFV enhanced in many NP models (10⁻⁷~10⁻¹⁰)

Thrust and visible energy are useful variables in analysis.²⁴

イロト イポト イヨト イヨト

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20193 / 40

Belle II physics

Observables	Expecte	d the, accu-	Expect	ed Facilit	v (2025)			
	racy		exp. ur	certainty	()			
UT angles & sides								
$\phi_1 [\circ]$	***		0.4	Belle I	I			
φ ₂ [°]	**		1.0	Belle I	I			
\$ 63 [°]	***	СКМ	1.0	LHCb	Belle II			
V _{cb} incl.	***		1%	Belle I	I			
$ V_{cb} $ excl.	***		1.5%	Belle I	I	E. K	ou. P U	rouiio et al.
V _{ub} incl.	**		3%	Belle I	I			
V _{ub} excl.	**		2%	Belle I	I/LHCb	Bel	le II Phv	/sics book.
CP Violation								
$S(B \rightarrow \phi K^0)$	***		0.02	Belle I	I	a	rXIV: 18	08.10567
$S(B \rightarrow \eta' K^0)$	***	CPV	0.01	Belle I	I	1 1 1		
$A(B \rightarrow K^0 \pi^0)[10^{-2}]$	***		4	Belle I	I	(A)	cceptec	110 PIEP)
$A(B \rightarrow K^{+}\pi^{-})$ [10 ⁻²]	***		0.20	LHCb.	Belle II			
(Semi-)leptonic								
$\mathcal{B}(B \rightarrow \tau \nu)$ [10 ⁻⁶]	**	Semi)	3%	Belle I	I			
$\mathcal{B}(B \rightarrow \mu \nu)$ [10 ⁻⁶]	**	DTONIO	7%	Belle I	I			
$R(B \rightarrow D\tau\nu)$	***	PIONIC	3%	Belle I	I			
$R(B \rightarrow D^* \tau \nu)$	***		2%	Belle I	I/LHCb			
				Radiative & EW Per	iguins			
				$B(B \rightarrow X_s \gamma)$	**		4%	Belle II
				$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10	$)^{-2}$ ***		0.005	Belle II
				$S(B \rightarrow K_S^0 \pi^0 \gamma)$	***		0.03	Belle II
				$S(B \rightarrow \rho \gamma)$	**	EWP	0.07	Belle II
				$\mathcal{B}(B_s \rightarrow \gamma \gamma) [10^{-6}]$	**		0.3	Belle II
				$\mathcal{B}(B \rightarrow K^* \nu \overline{\nu}) [10^{-6}$	***		15%	Belle II
Verv Ric	ch Ph	SICS		$\mathcal{B}(B \rightarrow K \nu \overline{\nu}) [10^{-6}]$	***		20%	Belle II
				$R(B \rightarrow K^*\ell\ell)$	***		0.03	Belle II/LHCb
Program	יר			Charm				
eg. an				$\mathcal{B}(D_s \rightarrow \mu\nu)$	***		0.9%	Belle II
				$\mathcal{B}(D_s \rightarrow \tau \nu)$	***	CHARM	2%	Belle II
				$A_{CP}(D^0 \rightarrow K_S^0 \pi^0)$ [10^{-2} **	S. 1.41 (1)	0.03	Belle II
				$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-$) ***		0.03	Belle II
				$\phi(D^0 \rightarrow K^0_S \pi^+ \pi^-)$	oj́ ***		4	Belle II
				Tau				
				$\tau \rightarrow \mu \gamma [10^{-10}]$	***		< 50	Belle II
				$\tau \rightarrow e \gamma [10^{-10}]$	***	TAU	< 100	Belle II
				$\tau \rightarrow \mu \mu \mu [10^{-10}]$	***		< 3	Belle II/LHCb

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20194 / 40

SuperKEKB: the nano beam scheme

<ロト < 部 > < 目 > < 目 > < 目 > < 回 > < の < 0</p>

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20195 / 40

Belle II detector

• The Belle II detector has better resolution, PID and capability to cope with higher background

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20196 / 40

New Physics in $b \to s \ell^+ \ell^-$

- Dilepton
 - Electron selected from dE/dx in CDC and ECL
 - Muon from KLM
 - We might be able to use TOP and ARICH for low momentum region which improve efficiency for low q² region
- Xs
 - is reconstructed from Knπ (0<=n<=4).
 - We can add three kaon modes and η modes (two pi0 modes?)
- Backgrounds
 - Dominated by $B \rightarrow XIv$ and $B \rightarrow YIv$
 - Second largest is ee→cc but event shape information can suppress the background.
 - Can be suppressed with missing energy and vertex information.

Y. Sato, Phys.Rev. D93 032008 (2016)

イロト イポト イヨト イヨト

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20197 / 40

Challenges for D* polarisation measurement

Main experimental problem: strong acceptance effects for $\cos \theta_{hel}(D^*) \ge 0.0$

efficiency

distribution of slow π^{\pm} from D^*

Effectively only $\cos \theta_{hel}(D^*) < 0$ is useful for $F_I^{D^*}$ measurement

Andrzej Bożek IFJ PAN, Kraków

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20198 / 40

Measurement of τ polarization in *B* decays

- both B⁰ and B⁻ decays are used; only 2 body τ decays: τ → πν, ρν
- ► sample divided into two bins of $cos\theta_{hel}$: I: $-1 < cos\theta_{hel} < 0$; II: $0 < cos\theta_{hel} < 0.8$ (for $\tau \to \pi\nu$)

Experimental challenges

- Distribution of cos θ_{hel}(τ) is modified by:
 - cross-feeds from other τ decays (contribute mainly in the region of cos θ_{hel}(τ) < 0)
 - peaking background (concentrated around cos θ_{hel}(τ) ≈ 1)
- corrections for detector effects: acceptance, asymmetric cosθ_{hel} bins, crosstalks between different τ decays
- for $\tau \to \pi(\rho)\nu$ modes combinatorial background from poorly known hadronic B decays

$$P_{\tau} = \frac{2}{\alpha} \frac{\Gamma_{\cos\theta_{\rm hel} > 0} - \Gamma_{\cos\theta_{\rm hel} < 0}}{\Gamma_{\cos\theta_{\rm hel} > 0} + \Gamma_{\cos\theta_{\rm hel} < 0}}$$

イロト イポト イヨト イヨト

Belle II first results and prospects for LFU tests, Puerto de la Cruz, Sep 23-28, 20199 / 40

M.Tanaka,R.Watanabe - arXiv:1212.1878v1 Differential distribution can be measured to constrain NP contributions

Detailed measurement of q^2 and other kinematic distributions including polarization of the τ and D^*

