Time-dependent studies with early Belle II data

Yosuke Yusa

Niigata University

Introduction

$B^{0}-\bar{B}^{0}$ mixing

B meson flavor changes via a box diagram and flavor oscillates with time evolution.

In Belle II, B meson pairs are produced from $\Upsilon(4 \mathrm{~S})$ decay and mixing occurs simlutaneously in two B mesons due to quntum entanglement.
\rightarrow Time-dependent analyses are performed by measuring a decay time difference of B mesons Δt.

Numbers of Mixed ($B^{0}-B^{0}$ or $\left.\bar{B}^{0}-\bar{B}^{0}\right)$ and Un-mixed ($B^{0}-\bar{B}^{0}$) events:

$$
\begin{aligned}
& N_{M} \propto e^{-|\Delta t| / \tau_{B^{0}}}[1-\cos (\Delta m \Delta t)] \\
& N_{U} \propto e^{-|\Delta t| / \tau_{B^{0}}}[1+\cos (\Delta m \Delta t)]
\end{aligned}
$$

Introduction

Time-dependent CP violation (TDCPV)

Induced by quntum interference with decay to the CP-eigenstates. Asymmery of TDCPV

$$
A_{C P}(\Delta t)=\frac{\mathcal{P}\left(\overline{B^{0}}(\Delta t) \rightarrow f_{C P}\right)-\mathcal{P}\left(B^{0}(\Delta t) \rightarrow f_{C P}\right)}{\mathcal{P}\left(\overline{B^{0}}(\Delta t) \rightarrow f_{C P}\right)+\mathcal{P}\left(B^{0}(\Delta t) \rightarrow f_{C P}\right)}
$$

$$
=S \sin \Delta m \Delta t+A \cos \Delta m \Delta t
$$

S: Time-dependent CPV parameter $\overline{\mathrm{b}}$ A(=-C): Direct CPV parameter
$\Delta m: B-B$ mass difference
$\Delta t: B-B$ decay time difference
Tree with box diagrram
\rightarrow S term contains CKM angles

$\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)$
$=\left(\begin{array}{ccc}1-\lambda^{2} / 2 & \lambda & \mathrm{~A} \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\lambda^{2} / 2 & \mathrm{~A} \lambda^{2} \\ \mathrm{~A} \lambda^{3}(1-\rho-i \eta) & -\mathrm{A} \lambda^{2} & 1\end{array}\right)$

Time-dependent analysis

To measure very small Δt, B mesons are produced through asymmeric energy collision of $e^{+} e^{-}$and displaccement of decay vertecies is measured.
\rightarrow convert to decay time using boost factor.

Reconstruction of decay vertex of B meson with good accuracy is a key item for time-dependent analysis in B-factory.

Experimental appartus and data set

Full detector including vertex detectors has been in operation from 2019.
\rightarrow Time-dependent analyses are in our reach.

Vertex detectors

2-layers pixcel (PXD) + 4-layers Double sided silicon detector (SVD) Due to problem in module production, we ran without a part of 2nd PXD layer.

- Closer inner layer contributes to improve vertex resolution.
- More K_{S}^{0} decays in SVD due to larger volume. \rightarrow Increase efficiency of K_{S}^{0} detection and vertex reconstruction using K_{S}^{0} direction in the decays without primary track from decay vertex: $B^{0} \rightarrow K_{S}^{0} \pi^{0}, B^{0} \rightarrow K^{*}\left(\rightarrow K_{S}^{0} \pi^{0}\right) \gamma$

do: closest approach of track in $x-y$ plane

Installed in Belle II Nov. 2018

Performance study of vertex detctors

Measurement of tracking impact parameter using Bhabha events.

Difference between width of the d_{0} distribution and beam profile ($\sigma_{x}=14.8 \mu \mathrm{~m}$, $\left.\sigma_{y}=1.5 \mu \mathrm{~m}\right)$ corresponds to the detector resolution.
d_{0} resolution is calculated as difference between electron and positron:
$\left[d_{0}\left(t_{-}\right)+d_{0}\left(t_{+}\right)\right] / \sqrt{2}$
Average:
$14.2 \pm 0.1 \mu \mathrm{~m}$ (Data)
12.5 $\pm 0.1 \mu \mathrm{~m}$ (Simulation)

To improve data/MC matching, alignment study is ongoing.

Measurement of mixing

Mixing rate is measured using flavor information of B mesons.
Branching fractions of semi-leptonic B decays are relatively large. $B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}(5.05 \pm 0.14) \%$

To keep signal efficiency, B meson is partially reconstructed.
Signal is reconstructed using high momentum lepton and low momentum pion from $D^{* 0} \rightarrow D^{0} \pi^{+}$decay.

Reconstruction of signal decay

$B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}$ signal is reconstructed using high momentum lepton and low momentum pion from $D^{* 0} \rightarrow D^{0} \pi^{+}$ decay.

Kinematic variables of neutrino is calculated from lepton and pion momentum with assumption of B at rest.

Reconstructed signals:
35492 ± 2209

Tagged analysis

Flavor of B meson is tagged by high momentum lepton track and other B meson vertex is reconstructed with beam spot information.

Fraction of mixed events with reconstruction efficiency ε

$$
\begin{aligned}
\chi_{d}= & \frac{N_{M} / \varepsilon_{M}}{N_{U} / \varepsilon_{U}+N_{M} / \varepsilon_{M}} \\
= & (17.2 \pm 3.6) \% \\
& (\mathrm{WA}=18.6 \%)
\end{aligned}
$$

Time-dependent analysis

Oscillation is observed in fraction in each $|\Delta t|$ region.
\rightarrow consistent with MC expectation with $\tau_{B^{0}}$ and Δm_{d} world average.

No oscillation pattern is seen in sample without $B \bar{B}$.
(compatible with flat with

$$
\left.\chi^{2} / \mathrm{ndf}=1.541\right)
$$

Samples for $\tau_{B^{0}}$ and Δm_{d} measurements

 $\tau_{B^{0}}$ and Δm_{d} will be measured using large numbers of flavorspecific samples of $B \rightarrow D h(h=\pi, \rho)$ and $B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}(\ell=e, \mu)$. They have been found in experimental data.

Reviser $\Delta E \equiv E_{\text {beam }}-E_{B}^{C M} \quad M_{\mathrm{bc}} \equiv \sqrt{\left(E_{\text {beam }} / c^{2}\right)^{2}-\left|\vec{p}_{B}^{C M} / c\right|^{2}}$
Revised when new approval illots are ready

Samples for TDCPV study

$$
\begin{gathered}
B \rightarrow J / \psi X \\
B^{0} \rightarrow J / \psi K_{S}^{0} \\
\text { yield }=26.9 \pm 5.2
\end{gathered}
$$

$\overline{\bar{a}}$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{bc}}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]
\end{aligned}
$$

CP-eigenstate for $\sin 2 \phi_{1}$ measurement and its control sample mode are observed using early data.

Summary

- Time-dependent analysis using B decay vertex information is available in Belle ll owing to vertex detectors installed in last year.
- Calibration and Performance check of the vertex detectors are confirmed using experimental data.
- $B^{0}-\bar{B}^{0}$ mixing is observed as an oscillation of time-dependent mixing rate distribution.
- Many decays for time-dependent studies are reconstructed found in early data sample.

Future prospects

We plan to accumulate a few hundred fb^{-1} data until next summer. Re-observations of time-dependent CP violation in several CPeigenstates are expected.
Mixing and lifetime measurement will reach to systematic limit soon. We have to consider strategy to reduce systematic uncertainty.

