The Belle II imaging Time-Of-Propagation (iTOP) detector in first collisions

Martin Bessner University of Hawaii for the iTOP group Belle II

VCI Vienna, Feb 22, 2019

Belle II

- Detector for SuperKEKB B-factory
- Higher luminosity than KEKB: 8E35/(cm² s) and 50/ab
- More precision, 30 kHz trigger rate, larger tracking detector

2/21

iTOP

- Particle identification in 2 cm
- Cherenkov detector
- Angle reconstructed from position and time of arrival
- 16 modules around interaction point

Light path

- Total internal reflection (>100 times)
- Expansion prism at backward side spatial resolution
- PMTs for detection
- 64x8 pixels per module
- Mirror at forward side

Light path

MCP-PMTs

- Microchannel plate PMTs 25 mm x 25 mm
- Single photon sensitivity
- Excellent time resolution
- 16 channels each
- Large sensitive area
- Works in magnetic field (1.5T)

 Can handle MHz hit rates per PMT

PMT lifetime

- PMTs accumulate several C/cm²
- Major challenge for MCP-PMTs: Outgassing reduces efficiency
- Hamamatsu: Improvements during mass production
- Three types installed
- Need to replace first type by 2020-2021

Digitization

- Need ~100 ps resolution → 2.7 GSamples/s, 12 bit
- Oscilloscopes?4 channels

 Detector: 8192 channels multiply: 33 TB/s

• 2000 oscilloscopes?

Digitization

Readout system: IRSX

- Custom chips, 8 channels/chip
- Write continuously to analog ring buffer (10 us)
- Internal trigger
 Flags regions of interest
 Digitize if there is a global trigger
- Extra memory region to avoid overwriting hits

https://arxiv.org/ abs/1804.10782

Data processing

- 8 channels per IRSX
- 4 IRSX per carrier PCB
- 4 carriers per boardstack
- Each step collects data from subsystems
- Feature extraction of digitized wave forms (50% constant fraction)
- Hits sorted to form events
- Data sent out with optical link

TOP module

4 boardstacks per module

Putting it together...

16 modules

13/21

First collisions

April 26, 2018

Control room

Time calibration

Goal: ~100 ps time resolution Done in 4 steps:

- Within channels
 Inject electronic pulses with known delay
- Between channels
 Inject laser pulses in module
- Between modules Cosmic muons, collision data
- Relative to collision time Collision data
- Geometrical alignment Cosmic muons, collision data

Reconstruction

- Channel: $D^{*+} \rightarrow D^0 \pi_s^+$ with $D^0 \rightarrow K^- \pi^+$ Tagging from π_s^+
- Position vs. time diagram
- Kaon flying towards prism
- PID from time of flight

Reconstruction

- Channel: $D^{*+} \rightarrow D^0 \pi_s^+$ with $D^0 \rightarrow K^- \pi^+$ Tagging from π_s^+
- Position vs. time diagram
- Kaon flying away from prism
- PID from pattern of photons

Particle identification

- Applied to 2018 data
- ϕ decaying to kaons
- TOP particle identification only (also dE/dx from tracking available)

Outlook

- Data taking will resume in March
- 7-9 months/year
- Goal: 50/ab
- What will Belle II discover?

Summary

- Belle II: More data, higher precision than Belle
- TOP: New detector type for particle identification
- Time of propagation + imaging
- Excellent time resolution for single photons at high rate
- First run in 2018
- Detector commissioning, initial data-taking
- Demonstrated concept of TOP
- Regular data-taking starting March 2019 Stay tuned!

Backup slides

Belle II vs. Belle

Quartz bar

Comparison: Belle timeline

Hua YE, "Belle & Belle II Activities", 2016

SuperKEKB

SuperKEKB collisions

See poster by Luka Šantelj: "Measurements of Beam Backgrounds at SuperKEKB"

MCP PMT lifetime

Kodai Matsuoka, "Improvement of the MCP-PMT performance under a high count rate", TIPP 2017

Endcap PID: ARICH

See talk by Leonid Burmistrov: "Belle II aerogel RICH detector"

Similar: LHCb's TORCH

https://cds.cern.ch/record/1981563

See talk by Thomas Henry Hancock: "Beam tests of a large-scale TORCH time-of-flight demonstrator"