Belle II Prospects for HVP Measurements

Toru lijima Kobayashi-Maskawa Institute Nagoya University

September 10, 2019

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Contents

- HVP measurements at Belle II
- Status of SuperKEKB/Belle II
- First look at the Belle II data
- Summary

References:

- "The Belle II Physics Book", arXiv:1808.10567
- Talks by Yosuke Maeda at
 - Workshop on HVP contributions to muon g-2, KEK, Feb. 12-14, 2018
 - Mini-workshop "Hints for New Physics in Heavy Flavors", Nagoya, Nov. 15-17, 2019

(g-2)_{μ} status and SM prediction

• The world average (dominated by the BNL-E821 measurements):

 $a_{\mu}^{\exp} = 11659209.1(5.4)(3.3) \times 10^{-10}$

• The SM prediction:

arXiv:1311.2198

- >3 σ deviation from experiments
- SM uncertainty is dominated by hadronic contributions

Error² budget (e.g. in KNT18)

$(g-2)_{\mu}$ and $\sigma(e^+e^- \rightarrow hadrons)$

- The leading order hadronic effect $(a_{\mu}^{Had, LO})$ involves low-energy QCD, and calculation is difficult.
- Dispersion relation and optical theorem relate $a_{\mu}^{\text{Had, LO}}$ to the cross section σ (e⁺e⁻ \rightarrow hadrons), which can be experimentally measured.

$$a_{\mu}^{\text{had};\text{LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \frac{ds}{s^2} K(s) R(s),$$

where $R \equiv \frac{\sigma_{\text{tot}}(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$
The energy region below 0.9 GeV
dominates, predominantly due to the
T⁺TT⁻ channel.

• These data are important also for determination of $\alpha_{QED}(M_Z)$.

Fractional contribution to $a_{\mu}^{Had, LO}$

Measurement Methods

Belle II strategy is to use the Initial State Radiation (ISR) method.

- Tag ISR photon
- Can scan wide energy range
- With the same experimental condition
- Lower statistics due to $O(\alpha)$ suppression
 - Can be compensated by high luminosity
- The method has been demonstrated by BaBar, BES, KLOE.

Direct scan method e.g.: Novosibirsk

Present Experimental Status (π+π-)

- The π⁺π⁻ channel has the most significant contribution to a_µ^{Had, LO}, dominating both its mean value and uncertainty.
- Already measured precisely (≤1%), by several experiments.
- Small discrepancy (a few %) among measurements.
 - New ISR data from KLOE and BES III have improved the estimate in the ρ region.
 - Tension exists between BaBar and others
- Must be confirmed by Belle II
 - w/ target precision of $\rightarrow 0.5\%$

Comparison of each experimental data and the fit in the ρ region

6

Advantages in Belle II

- High luminosity provides large statistics not only for signals themselves, but also for control samples need to estimate systematic uncertainties.
- The measurement is programed from the beginning of the experiment, therefore, well-designed & optimized triggers can be used.
 - Belle suffered from large efficiency loss because the measurement was not considered for the trigger design.
- Larger detector coverage (less asymmetry w.r.t BaBar)
- Lessons from previous experiments, as well as improved generators, can be utilized.
 PHOKHARA + AfkQED

e.g. systematic errors in the BaBar measurements.

• Relatively large error in PID.

With large data sample, PID error may be removed if $\pi\pi\gamma$ and $\mu\mu\gamma$ can be separated using angular distribution difference. arXiv:1808.10567

Sources	0.3-0.4	0.4 - 0.5	0.5 - 0.6	0.6-0.9	0.9-1.2	1.2 - 1.4	1.4-2.0	2.0-3.0
trigger/ filter	5.3	2.7	1.9	1.0	0.7	0.6	0.4	0.4
$\operatorname{tracking}$	3.8	2.1	2.1	1.1	1.7	3.1	3.1	3.1
π -ID	10.1	2.5	6.2	2.4	4.2	10.1	10.1	10.1
<mark>backgroun</mark> d	3.5	4.3	5.2	1.0	3.0	7.0	12.0	50.0
acceptance	1.6	1.6	1.0	1.0	1.6	1.6	1.6	1.6
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9	0.9	0.9	0.9
correl $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0	3.0	10.0	10.0
$\pi\pi/\mu\mu$ non-cancel.	2.7	1.4	1.6	1.1	1.3	2.7	5.1	5.1
unfolding	1.0	2.7	2.7	1.0	1.3	1.0	1.0	1.0
ISR luminosity	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
sum (cross section)	13.8	8.1	10.2	5.0	6.5	13.9	19.8	52.4

PRD 86,032013 (2012)

Expected Background and Efficiency

- With particle ID cuts applied, the background is dominated by other ISR modes (π⁺π⁻π⁰, K⁺K⁻, ...),
 - O(%) level, similarly to BaBar
 - High background at low mass; π⁺π⁻ π⁰ with low energy π⁰ (can be reduced by e.g. kinematical fit, ...)
- Efficiency = 49% for $50^{\circ} < \theta_{ISR} < 110^{\circ}$
 - Expect > IM events with 500fb⁻¹
- Early Belle II run will provide results with competitive errors to previous experiments

Y. Maeda, workshop on HVP contributions to muon g-2, KEK, Feb. 12-14, 2018

With larger data sample, errors can shrink to $\sim 1\% \rightarrow \sim 0.5\%$

T Spectral Functions

- HVP can be estimated also by τ hadronic spectral functions and CVC, together with isospin breaking corrections.
- Earlier results showed discrepancy between e+e- and T based evaluations, but more recent studies with γ-ρ mixing and Hidden Local Symmetry (HLS) show that two are rather compatible.

SuperKEKB Accelerator

• Low emittance ("nano-beam") scheme employed (originally proposed by P. Raimondi)

Belle II Detector

- Deal with higher background (x10-20), radiation damage, higher occupancy, higher event rates (L1 trigg. 0.5→30 kHz)
- Improved performance and hermeticity

The Belle II Collaboration

12

- Belle II has now grown to ~ 1000 researchers from 112 institutions in 26 countries.
- Large international collaboration hosted by KEK, Japan

SuperKEKB/Belle II Plan

Phase I (w/o QCS/Belle II)

- Accelerator basic tuning with single beams
- Feb-June, 2016

Phase 2 (w/ QCS/Belle II but w/ oVXD)

- Verification of nano-beam scheme
- Understand beam background
- Physics run (April 27 June 17, 2018)

Phase 3 (w/ full detector)

- Physics run (March 27 July 1, 2019)
- 5ab⁻¹ by ~2022
- 50ab⁻¹ by ~2027

Global Schedule

SuperKEKB/Belle II Phase 3

- SuperKEKB operation started March
- e⁺e⁻ collision started on March 25.
 - Physics run from March 27 to July
- Accumulated ~6.49 fb⁻¹.
 - 0.83 fb⁻¹ recorded below the $\Upsilon(4S)$
- $L_{peak} \sim 5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ in physics runs with $\beta_y^* = 3 \text{ mm}$ optics.
- $L_{peak} \sim 1.2 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$ was recorded with $\beta_y^* = 2 \text{mm}$ optics and 820/830 mA (LER/HER).
 - Belle II was OFF due to high background.

Belle II Performance Snapshots

Signals involving photons

First Belle II Physics Plots

Search for Dark Sector (Belle II First Physics)

- A novel result on the dark sector (Z' → nothing) recoiling against di-muons or an electron-muon pair.
- Both possibilities are poorly constrained at low Z' mass and in the first case, could explain the muon g-2 anomaly.

These demonstrate how well Belle II controls low multiplicity events.

First Look at the Belle II Data

- Data collected during the Phase 2 physics run: 472 pb⁻¹
- Goal of the analyses :
 - To observe ρ meson peak in the mass spectrum
 - Comparison to a MC simulation
 - Study of trigger efficiency

Example of an event display for a ρ meson candidate

Analysis Procedure

- Select events with
 - One energetic photon (E^{CMS} > 3GeV)
 - Two charged tracks (p^{CMS} > IGeV/c)
- Selection criteria

- E/p < 0.8 to remove radiative Bhabha (e⁺e⁻ \rightarrow e⁺e⁻ γ) contribution
- $10 < M(\pi\pi\gamma) < 11 \text{ GeV/c}^2$ and no other extra particles

Y. Maeda, mini-workshop "Hints for New Physics in Heavy Flavors", Nagoya, Nov. 15-17, 2019, also for plots in the following 3 slides

ππ Mass Spectrum

- The ρ meson peak is clearly observed.
- No PID is used expect for E/p \rightarrow contribution from $\mu\mu\gamma$ and KK γ
- Reasonable Data/MC agreement
 - Data/MC = $1.065 \pm 0.037_{stat}$ (0.5<E<1.0 GeV/c²)
 - 100% trigger efficiency is assumed in MC

Results for other modes

- The e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$ process is also studied.
 - 2nd largest contribution to HVP.
- The ω and ϕ peaks are clearly observed.
- Reasonable agreement between data and MC.

 $M(\pi^+\pi^-\pi^0)$ [GeV/ c^2]

Trigger Efficiency

- High trigger efficiency is necessary for precision measurements.
- Belle II trigger for $e+e- \rightarrow \pi\pi\gamma$.
 - Total calorimeter energy > I GeV
 - Bhabha veto (
 Ioss due to this veto must be small)
 - "Belle-type Bhabha": based on only θ angles
 - "3D Bhabha": based on both θ and ϕ
- All Bhabha events were collected in Phase 2, and efficiency loss can be easily evaluated by counting #events w/ Bhabha trig.
 - Belle type : (6.4 ± 1.3 stat)%
 - 3D Bhabha :(0.6 ± 0.4 stat)%
 - 2 events lost / 360 events

The New Bhabha veto logic works !

M(ππ) [GeV/c²]

Summary

- Precision measurement of σ(ee → hadron) in Belle II with the ISR method will provide estimate of HVP effects, which is critical inputs to reduce uncertainty in the SM prediction (g-2)_µ.
- The SuperKEKB/Belle II project has just started its data taking runs, and accumulated O(fb⁻¹) data by now.
- The first look at early Belle II data has shown ;
 - Clear peak of the ρ meson ($\pi^+\pi^-$ mode).
 - Also ω and ϕ peaks ($\pi^+\pi^-\pi^0$ mode).
 - Reasonable agreement between data and MC.
 - Small efficiency loss due to Bhabha veto; ≤1% w/ new 3D Bhabha veto logic.
- O(100)fb⁻¹ data expected within I year will provide the first result for HVP.
- Also possible to perform
 - **τ** spectral function measurement
 - Two-photon processes (e⁺e⁻ $\rightarrow \gamma\gamma e^+e^- w/ \text{ double-tag}$) to constrain $a_\mu^{HAD, LbL}$

Stay Tuned !

Backup Slides

Two-photon Physics for a_µHAD, LbL

- γγ physics allows one to constrain important input quantities needed for a datadriven analysis of a_µ^{HAD, LbL}, with dispersion theory.
- Expansion in terms of the mass of intermediate states are dominated by pseudo scalar poles, π^0 , η , η' , followed by two-meson states, $\pi\pi$, KK, and higher contributions.

25

- Two-photon processes, $e^+e^- \rightarrow \gamma \gamma e^+e^-$, can be studied at Belle II, both with single-tag and double-tag.
- Double-tag data are useful for HLbL.
 - Q2 of two virtual photons
 - Exclusive reconstruction of final-state hadrons
 - No data so far for W< 5GeV.
 - Careful Bhabha-veto trigger design.

Fig. 200: $e^+e^- \rightarrow e^+e^-\pi^0$ and $e^+e^- \rightarrow e^+e^-\pi\pi$ in space-like (top) and time-like (bottom) kinematics.