

Tau LFV and LNV at Belle II

Outline

- B factory as tau factory
- Belle II status
- tau LFV/LNV search

Tomoyuki Konno

for the Belle II collaboration Kitasato University 30/08/2019, Korea

B factory as tau factory

τ-factory at B-factory

B-factory is τ factory!

- KEKB: asymmetric e+(3.5 GeV) e-(8 GeV)
 - Peak luminosity: 2.1x10³⁴ cm⁻²s⁻¹
 - => World highest peak luminosity
 - σ(ττ) ~ 0.9 nb
 - σ(bb) ~ 1.1 nb
 - => Pure ττ can be collected
- Belle Detector:
 - Full event reconstruction
 - => Lepton efficiency: 90 % Fake rate : O(0.1) % for e O(1) % for μ

Motivation to τ physics

tau Physics has clear signature to New Physics!

• Quest for New Physics – Lepton flavor (number) violating decays is suppressed in SM – Clear hints to New Physics models $\mathcal{B}(\tau \to l\gamma) = \frac{3\alpha}{32\pi} |\sum U_{\tau i}^* U_{\mu i} \frac{\Delta_{3i}^2}{m^2}|^2$

Hadronic decays

 Unique tool for precise studies of low energy QCD and CP violation

Search for tau LFV

 Lepton Flavor Violation (LFV) is highly suppressed in the Standard Model (SM) even if neutrino oscillation is taken

- Br < O($10^{-10^{-45}}$) => Experimentally unreachable

- Lepton Number Violation (LNV) is also strongly suppress in SM
 Observation of LNV will hint at light NP scale
- Many extensions to SM predict to enhance LFV to be Expected to be investigated by real experiments: Br ~ O(10⁻⁸)
- Tau lepton the heaviest charged lepton coupling to the NP
- => Many possible LFV decay modes related to the NP models

Predicted BF in various models

• Ratio of Tau LFV decay BF provides discrimination of NP models

(M.Blanke, et al., JHEP 0705, 013(2007), C.Yue, et al., PLB547, 252 (2002))

	SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z' boson
$\left(\frac{\tau \to \mu \mu \mu}{\tau \to \mu \gamma}\right)$	$\sim 2 \times 10^{-3}$	0.06~0.1	0.4~2.3	~16
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	$\sim 1 \times 10^{-2}$	$\sim 1 \times 10^{-2}$	0.3~1.6	~16
Br ($ au o \mu \gamma$)	< 10 ⁻⁷	< 10 ⁻¹⁰	< 10 ⁻¹⁰	< 10 ⁻⁹

Favorite modes $\tau \rightarrow \mu \gamma$

• It is important to search for various kinds of τ LFV

=> Almost all decay modes are studied using the Belle data

Belle II Status

SuperKEKB / Belle II

Nano-beam 5mm scheme

Super B factory is also Super τ factory!

- 40 times higher luminosity
 - Focus on small β_{y}^{*} : **x 20**
 - Increase in current : x 2
 - => Integrated 50 ab⁻¹
- Full operation in 2019 with Belle II
- => 4.6 x 10¹⁰ τ pairs will be collected

Phase III started for physics!

Restarted at 25th March 2019 with Full Belle II / SuperKEKB

- Peak Lumi. :4 x 10³³ cm⁻²s⁻¹
- Int. Lumi : 3 fb⁻¹
- => Increasing Luminosity !

100

-50

-100

-100

τ pair candidates with τ ->3πν

• τ pair are also extracted in the beam commissioning data

$\tau \rightarrow 3\pi v$ in Belle II early data

- Data has good agreement with MC after selection cuts
- Performance of the subsystems is enough as expected

τ mass in Belle II early data

 Tau mass from Belle early data is consistent to previous results

 m_{τ} = (1776.4 ± 4.8 (stat)) MeV/c2

Measured in $\tau \rightarrow 3\pi v$

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

Distribution of the pseudomass is fitted to a empirical edge curve

τ LFV / LNV search

Analysis procedure

• Signal extraction: $m_{\mu\mu\mu} - \Delta E$ plane

$$-m_{\mu\mu\mu} = \sqrt{E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2} \sim m_{\tau}$$

$$-\Delta E = E_{\mu\mu\mu}^{CM} - E_{beam}^{CM} \sim 0$$

• Number of Background is estimated using sideband data and MC

Search for tau LFV in B factory

- Various interesting channels can be studied in B factories
 - $\tau \rightarrow \ell \ell \ell$ $\tau \rightarrow \ell K_{s}, \Lambda h$ $\tau \rightarrow \ell V_{0} (\rightarrow h h')$ $\tau \rightarrow \ell P^{0} (\rightarrow \gamma \gamma)$ $\tau \rightarrow \ell h h'$ $\tau \rightarrow \ell h h'$ $\tau \rightarrow \ell \gamma$ $\tau \rightarrow \ell \gamma$
- Rare decay search :
 => Understand backgrounds and reduce as much as possible
- Review Belle results proceeding to Belle II

Signal and backgrounds (au ightarrow lll)

 $\mu^{-}\mu^{+}\mu^{-}$ 0.13 ± 0.06 6.1 0.10 ± 0.04 $e^{-}\mu^{+}\mu^{-}$ $\mu^- e^+ e^-$ 9.3 0.04 ± 0.04

Tau LFV and LNV at Belle II

1.75

N_{BG}^{EXP}

0.21±0.15

 0.02 ± 0.02

0.01 + 0.01

1.8

 $m_{e\mu\mu}$ (GeV/c²)

1.85

σ_{syst} (%)

9.8

7.4

9.5

7.8

7.6

7.7

17

1.5

=> Emphasize the low background compared to LHCb

Br < $\sim 10^{-8}$ at 90%CL

in the signal region. **Almost BG free !**

- - Expected # of BG: 0.01-0.21

 $\tau \rightarrow \ell \ell \ell$ -0 -0.2 -0.4Phys.Lett.B687,139 (2010) 1.7 1.8 1.7 1.75 $m_{eee} (GeV/c^2)$ Data: 782fb⁻¹ ΔE (GeV) ΔE (GeV) (d) $\tau \rightarrow \mu e^+ e^-$ 0.2 0.2 No event s are found -0.2

Mode

 $e^-e^+e^-$

 $\mu^- e^+ \mu^-$

 $e^{-}\mu^{+}e^{-}$

-0.4 1.65

UL (x10⁻⁸)

2.7

2.1

2.7

1.8

1.7

(c) $\tau \rightarrow e^{\dagger}\mu^{\dagger}\mu^{\dagger}$

1.85

ε (%)

6.0

7.6

10.1

11.5

 $m_{\mu ee} (GeV/c^2)$

Belle result : $\tau \rightarrow \mu \gamma$, $e\gamma$

Phys. Lett. B 666, 16 (2008)

Blinding box approach evaluating BG out side the signal region

- Search with 545 fb⁻¹
 - Main BG : $\tau \rightarrow \mu \nu \nu + ISR \gamma$
 - miss/missing tracks
- $\tau \to \mu \gamma$: Br < 4.5 x 10⁻⁸ (90%CL)

0.1

$\tau \rightarrow \ell h h'$

• Search with 854fb⁻¹ data

- BaBar: Br<(7-48)x10⁻⁸at 221fb⁻¹

• 14 modes are investigated ($h, h' = \pi^{\pm}, K^{\pm}$)

 $-\tau^- \rightarrow \ell^- h^+ h'^-$: 8 modes (lepton flavor violation)

 $-\tau^- \rightarrow \ell^+ h^- h'^-$: 6 modes (lepton number violation)

$\tau \rightarrow \ell h h'$

Upper limits at 90%CL: Br($\tau \rightarrow \ell h h'$) < (2.0-8.4)x10⁻⁸

- No significant excess
 - 1 event: $\mu^-\pi^+\pi^-$, $\mu^-\pi^+K^-$
 - no events: other modes
 - => Expected # of BG: 0.06-0.72

-						
Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$B(10^{-8})$
$ au^- ightarrow \mu^- \pi^+ \pi^-$	5.83	0.63 ± 0.23	5.3	0	1.87	2.1
$ au^- ightarrow \mu^+ \pi^- \pi^-$	6.55	0.33 ± 0.16	5.3	1	4.02	3.9
$\tau^- \to e^- \pi^+ \pi^-$	5.45	0.55 ± 0.23	5.4	0	1.94	2.3
$\tau^- \rightarrow e^+ \pi^- \pi^-$	6.56	0.37 ± 0.18	5.4	0	2.10	2.0
$ au^- ightarrow \mu^- K^+ K^-$	2.85	0.51 ± 0.18	5.9	0	1.97	4.4
$\tau^- ightarrow \mu^+ K^- K^-$	2.98	0.25 ± 0.13	5.9	0	2.21	4.7
$\tau^- \to e^- K^+ K^-$	4.29	0.17 ± 0.10	6.0	0	2.28	3.4
$\tau^- \to e^+ K^- K^-$	4.64	0.06 ± 0.06	6.0	0	2.38	3.3
$ au^- ightarrow \mu^- \pi^+ K^-$	2.72	0.72 ± 0.27	5.6	1	3.65	8.6
$\tau^- \to e^- \pi^+ K^-$	3.97	0.18 ± 0.13	5.7	0	2.27	3.7
$\tau^- \to \mu^- K^+ \pi^-$	2.62	0.64 ± 0.23	5.6	0	1.86	4.5
$\tau^- \to e^- K^+ \pi^-$	4.07	0.55 ± 0.31	5.7	0	1.97	3.1
$\tau^- \to \mu^+ K^- \pi^-$	2.55	0.56 ± 0.21	5.6	0	1.93	4.8
$\tau^- \to e^+ K^- \pi^-$	4.00	0.46 ± 0.21	5.7	0	2.02	3.2

Phys.Lett.B719,346 (2013)

Expectation of LFV search at Belle II

Belle II will reach the New Physics Models in first several years

 Sensitivity depends on BG level
 => Improve achievable sensitivity

With final statistics at 50ab⁻¹

- $B(\tau \rightarrow \mu \gamma) \sim O(10^{-9})$ and $B(\tau \rightarrow \mu \mu \mu) \sim O(10^{-9})$
- Slopes depend on background

old plots, conservative

Upper limits at (Super) B factories

• Current estimation with Belle II final statistics : ~10⁻² lower

=> Several models are expected to be investigated in in Belle II !

Tau LFV and LNV at Belle II

Summary

- B factory is also open for τ physics in new physics search
 - Studies with τ pairs are carried out in Belle and BaBar
 - No significant result for LFV/LNV has been found yet
- Belle II experiment started full operation in early 2019!
- Many of τ LFV channels are possible to study in early Belle II
 Improved Upper limit of Branching fraction by O(10⁻²)
- Hadronic decays of τ lepton is also interesting for New Physics
 Limited by statistics and possible to be improved in Belle II
- More details are in "The Belle II Physics Book" <u>arXiv:1808.10567</u>

Belle II started Collision!

First collision at 26/04/2018

- 3 months operation until 18th July
- Almost full detector worked well

Integrated Luminosity : ~500 pb⁻¹

Tau LFV and LNV at Belle

Predicted BF in various models

• Various models predict BF for $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \mu \mu$

	Reference	$ au o \mu \gamma$	$ au ightarrow \mu \mu \mu$
SM+ ν mixing	EPJ C8 (1999) 513	10 ^{-10~45}	
SM + heavy Maj ν_R	PRD 66 (2002) 034008	10 ⁻⁹	10-10
Non-universal Z'	PLB 547 (2002) 252	10 -9	10 ⁻⁸
SUSY SO(10)	PRD 68 (2003) 033012	10 ⁻⁸	10-10
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10-9
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7

Numbers correspond to the most optimistic case

Super B factory will reach a possible region to τ LFV!

Beam background

Understanding beam background is essential for τ physics in Belle II

- Beam related background is expected to be 20 times higher than Belle
- Several hardware improvements applied
- => Beam related background is controllable by track reductions in an event

Extraction of τ pairs

Huge τ pairs samples are collected by tagging method

Signal side e^+ $e^ \tau^+$ e^- Tag side

Event shapes helps to reduce backgrounds significantly

$$T = \frac{\sum_{i=1}^{N} |\mathbf{T} \cdot \mathbf{p_i}|}{\sum_{i=1}^{N} |\mathbf{p_i}|}$$

Thrust vector, minimizing T, shows sphericity of an event

Violations in τ hadronic decay

CP violation in $\tau \rightarrow K_s \pi \nu$

 CPV from a charged scalar boson exchange causes a difference in decay angular distributions

$$A_{i}^{CP} = \frac{ \int Q_{2,i}^{2} \cos\beta \cos\psi (\frac{d\Gamma_{\tau^{-}}}{d\omega} - \frac{d\Gamma_{\tau^{+}}}{d\omega}) d\omega}{\frac{1}{2} \int Q_{2,i}^{2} (\frac{d\Gamma_{\tau^{-}}}{d\omega} + \frac{d\Gamma_{\tau^{+}}}{d\omega}) d\omega} \\ \simeq \langle \cos\beta \cos\psi \rangle_{\tau^{-}}^{i} - \langle \cos\beta \cos\psi \rangle_{\tau^{+}}^{i},$$

$$d\omega = dQ^2 d\cos\theta d\cos\beta$$

70 times improvement is expected in Belle II => |A^{CP}| < (0.5 - 3.8) x 10⁻⁴

Tau LFV and LNV at Belle II

Ζ

 p_1

Χ

CP violation in $\tau \rightarrow K_s \pi (\geq 0\pi^0) \nu$

- τ decays with K_s meson in final states
 - Nonzero decay rate asymmetry due CP violation to Kaon sector $A_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K_S^0 \bar{\nu_{\tau}}) - \Gamma(\tau^- \to \pi^- K_S^0 \bar{\nu_{\tau}})}{\Gamma(\tau^+ \to \pi^+ K_S^0 \bar{\nu_{\tau}}) + \Gamma(\tau^- \to \pi^- K_S^0 \bar{\nu_{\tau}})}$
- SM prediction : (3.6±0.1) x 10⁻³

I. Bigi and A. I. Sanda, Phys. Lett. B 625, 47 (2005). Y. Grossman and Y. Nir, JHEP 2012.4 (2012).

• BaBar results : $(-3.6\pm2.3\pm1.1) \times 10^{-3}$

2.8σ discrepancy from SM

• Belle II will provide an improvement

J.P. Lees et.al (BaBar) Phys.Rev D85 (2012) 031102

Second class currents : $\tau \rightarrow \eta \pi \nu$ decay

Br (Belle) < 7.3x10⁻⁵, 90%CL

• SM : Isospin violation

 $\epsilon_{\eta\pi} = \frac{\langle \pi^0 | H | \eta \rangle}{m_{\eta}^2 - m_{\pi^0}^2} = \frac{\sqrt{3}}{4} \frac{m_d - m_u}{m_s - \bar{m}} \sim 1.5 \times 10^{-2}$

- SM contribution is suppressed
 - BR in SM ~ 10⁻⁵

=> Clear signal will suggest new Physics

 Belle II will investigate in the first years of data taking