First look at the time-dependent CP violation using early Belle II data

Vladimir Chekelian Max Planck Institute for Physics, Munich on behalf of the Belle II collaboration

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- measurement of the time-dependent CP violation in $Bd \rightarrow J/\psi K_S^0$ was the principal motivation for building the asymmetric B-factories PEP II at SLAC and KEKB \rightarrow The Nobel Prize 2008 in Physics (CKM)

- improvement of time-dependent CP violation measurements is one of the major goal for Belle II physics program at the B-factory SuperKEKB aiming for collection of 50 ab⁻¹.

- SuperKEKB started operation: from 25 March to 30 June in this early phase of operation Belle II collected \sim 6.5 fb⁻¹

2019: First SuperKEKB collisions in the physics run

Time-dependent CP violation and the CKM unitarity matrix

 $A(t) = \frac{\Gamma(\bar{B}^0 \to f_{CP}) - \Gamma(B^0 \to f_{CP})}{\Gamma(\bar{B}^0 \to f_{CP}) + \Gamma(B^0 \to f_{CP})} = -\xi_f \sin(2\varphi_1) \sin(\Delta m t), \qquad S_{CP} = \sin(2\varphi_1)$

- φ_1 and φ_2 can be measured in TD CPV analyses of for $B^0 \rightarrow c\bar{c}s$, $q\bar{q}s$ and $B^0 \rightarrow u\bar{u}d$, e.g. for $B^0 \rightarrow J/\psi K_S^0$

→ room for improvement of the CPV measurements at Belle II projections to 5 ab⁻¹ and 50 ab⁻¹ (arXiv:1808.10567)

 $|\overline{B}^{\theta}|$

	WA (2017)		5 ab^{-1}		$50 {\rm ~ab^{-1}}$	
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	0.0090
ϕK^0	0.12	0.14	0.048	0.035	0.020	0.011
$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	0.008
ωK_S^0	0.21	0.14	0.08	0.06	0.024	0.020
$K^0_S \pi^0 \gamma$	0.20	0.12	0.10	0.07	0.031	0.021
$K_S^{0}\pi^0$	0.17	0.10	0.09	0.06	0.028	0.018

Time-dependent CP violation analyses at the asymmetric B-factories

The B^0B^0 pairs from $\Upsilon(4S)$ are produced in a **coherent, entangled quantum mechanical state.** When $B^0(\overline{B^0})$ decays, the flavor wavefunction of other $\overline{B^0}(B^0)$ collapses and it propagates alone. One needs to measure decay times of both B⁰s to observe CP violation.

CP violation, mixing and lifetime are coming together and can be found in the fit to Δt distribution in data B^0 :

$$P_{sig}(\Delta t) = \frac{exp\left(-\frac{|\Delta t|}{\tau}\right)}{4\tau} \left(1 + q_{tag}\left(\begin{array}{c}A_{CP}\cos(\Delta m \Delta t) \\ A_{CP}: direct CPV\end{array}\right) + \begin{array}{c}S_{CP}\sin(\Delta m \Delta t) \\ S_{CP}=\sin(2\varphi_{1}) mixing-induced CPV\end{array}\right)$$

$$q_{tag} = -\xi_{CP} \text{ for } B^{0}_{tag} \\ q_{tag} = \xi_{CP} \text{ for } \overline{B}^{0}_{tag} \\ |\overline{B}\rangle \xrightarrow{\neq} |\overline{f}\rangle \\ |\overline{B}\rangle \xrightarrow{\neq} |\overline{f}\rangle \end{array}$$

Vladimir Chekelian 24.08.2019 Lomonosov Conference, Moscow

First look at TD CPV using early Belle II data

 $|f_{CP}\rangle$

SuperKEKB & Belle II

The first physics run 25 March – 30 June 2019 6.5 fb⁻¹ in total: at Y(4S) and off-resonance (0.83 fb⁻¹)

 \rightarrow The final goal in an integrated luminosity of 50 ab⁻¹ at Y(4S)

- use frame of the Belle detector and ECL
- new vertex detector VXD (PXD + SVD)
- new particle identification for K/p/ π separation
- new CDC tracking smaller cells and larger coverage
- improved KLM for $\,\mu\,$ and K_L detection
- new electronics for ECL

The pixel detector PXD and the silicon vertex detector SVD

PXD DEPFET technology with the pixel size 50 x 55(85) x 75 μm³
1st layer is at 14 mm from the beam, 2nd layer will be installed in 2021
SVD 4 double sided strip layers at radii from 39 mm to 135 mm

Improvement of precision of the vertex position measurements by almost a factor of two w.r.t. Belle

arXiv:1808.10567

VXD and space & time measurements in the early Belle II data

\rightarrow Belle II data are close to expectations for

- beam spot profile convoluted with
- vertex position resolution (at $\varphi_0 = 0$): 14.2±0.1 µm compared to 12.5±0.1 µm in MC

B^0 - \overline{B}^0 mixing in the early Belle II data

Lomonosov Conference, Moscow

The ratio of the opposite charged leptons to the sum of the same and opposite charged leptons

 $\rightarrow B^{0}$ mixing causes an appearence of the same charged leptons with the time

First look at TD CPV using early Belle II data

Observation of the golden decay mode $B^0 \rightarrow J/\psi K_S^0$

- about half of available data: 2.62 fb⁻¹
- both channels $J/\psi \rightarrow \mu\mu$, ee are considered
- 2D unbinned ML fit on two variables

 $\Delta E = E_{B}^{*} - E_{beam}^{*}$ $M_{bc} = \sqrt{E_{beam}^{2} - p*2}$

- shades areas are excluded from the fit to suppress contribution from $B^0 \rightarrow J/\psi K^{*0}$

Yield of $B^0 \rightarrow J/\psi K_S^0$ 26.9 ± 5.2 eventsbackground 1.6 ± 0.3 events

→ not enough data yet for the time-dependent CP violation fit, the collection of data will continue in October

Vladimir Chekelian 24.08.2019 Lomonosov Conference, Moscow

5.24

Belle II 2019 Preliminary L dt = 2.62 fb⁻¹

00

▫∩▫

0.0

5.28

M_{bc} [GeV/c²]

5.3

5.26

5.22

[Леб] Ш 0.1

-0.1

∩⊨∎⊓о

New challenge for the time-dependent analysis

In the traditional approach for time-dependent fits (used at Belle and BaBar) the maximum of the unbinned likelihood is used $\max L = \prod_{i} P^{i}_{ev}(\Delta t) \quad with \quad P^{i}_{ev}(\Delta t) = \int_{-\infty}^{+\infty} d(\Delta t^{true}) P_{theory}(\Delta t^{true}) R(\Delta t - \Delta t^{true})$ assuming that **theory and detector effects are independent** and the Δt resolution function R does not depend on true Δt^{true}

→ this is not granted at Belle II because of the tiny size of the beam spot, excellent precision of PXD and a need to make use the beam spot information for improvement of the B⁰_{tag} vertex position on the tag side:

the beam information helps to select tracks directly from B^{0}_{tag} decay and remove displaced tracks from decays of charmed particles (Ds) or K_{s}^{0}

Several developments at Belle II to deal with the new challenge

- 1. Optimisation of the B⁰_{tag} vertexing on the tag side: to get precision and to mitigate problems related to the beam spot
- 2. Further development of the traditional approach
- 3. A new paradigm of time-dependent fits which is robust and could deal

with correlations between theory and detector effects,

see below →

An alternative paradigm of time-dependent fits at Belle II

see also V. Chekelian "The MPI Concept of Time-Dependent Fits at Belle II", xFitter Workshop, Minsk, March 2019 https://indico.desy.de/indico/event/22011/session/7/contribution/24/material/slides/0.pdf

- $P_{ev}^i(\Delta t) \rightarrow$ calculated numerically using weighted MC events (i.e. use convolution of theory and detector from simulation)
- variation of input physics parameters (τ , Δm , S_{CP} and A_{CP}) \rightarrow by weighting of an auxiliary, "assistive" MC sample
- differences in the detector response between data and simulation → by downgrading (smearing) of the detector response in an auxiliary, "assistive" MC sample, using weighting of the simulated event
- physics parameters and the detector smearing → determined simultaneously in the TD CPV fit of the signal and control channels

New input physics parameters – analytic expression for weighting of MC

Input from generator to simulation:

If values of $t^{B^0 first}$ and Δt are defined (and frozen): \rightarrow simulation of the detector effects does not depend on τ , δm , A, S \rightarrow only probability of event with given $t^{B^0 first}$ and Δt depends on τ , δm , A, S

 \rightarrow Thus, MC sample generated with τ_0 , δm_0 , A_0 , S_0 can be used to get MC sample equivalent to simulation with τ , δm , A, S $w = P_{theory}(t^{B^0first}, \Delta t; \tau, \delta m, A, S) / P_{theory}(t^{B^0first}, \Delta t; \tau_0, \delta m_0, A_0, S_0)$ by the weighting of MC events

Treatment of discrepancies between data and MC in the detector response

prior the TD fit (once) \rightarrow smearing of reconstructed quantities (Δt) in the MC sample

- very flexible and can have any level of complexity if there is a model for downgrading of the detector resolution

- the simplest and also very efficient smearing model: $\Delta t' = \Delta t + G(\alpha_{smear} \cdot \delta(\Delta t))$ $(\delta(\Delta t) - uncertainty of \Delta t)$

during the TD fit (many times) → *approximation of the "simplest smearing model" by the weighting of the MC sample* - could be directly included in the TD fit with the smearing factor and the physics parameters determined simultaneously

First, determine a simplified Δt resolution function in a two gaussian fit of the simulated MC sample: $P_{res.func} (\Delta t - \Delta t_{true}) = f G_1(\mu_1, \sigma_1) + (1 - f) G_2(\mu_2, \sigma_2)$ where $\mu_i = \mu_i^{pull} \cdot \delta(\Delta t)$ and $\sigma_i = \sigma_i^{pull} \cdot \delta(\Delta t)$ determined separately for positive and negative Δt_{true}

Then, analytic expression for weighting of MC events $w = P_{res.func}^{new} / P_{res.func}$, where $P_{res.func}^{new} = f G_1(\mu_1, \sigma_1^{new}) + (1 - f) G_2(\mu_2, \sigma_2^{new})$ with $\sigma_i^{new} = \sqrt{\sigma_i^2 + (\alpha_{smear} \delta(\Delta t))^2}$

Summary

- The first Belle II physics run at the B Factory SuperKEKB just finished with collected luminosity of ~6.5 fb⁻¹
- The Belle II physics run will resume in October and continue until summer 2020
- Rediscovery of known phenomena with early data (~6.5 fb⁻¹) - $B^0 - \overline{B^0}$ mixing, ...
- Demonstration of time-dependent capabilities with early data
 - beam spot profile,
 - performance of VXD (PXD+SVD) and space & time measurements
 - observation of the signal channel $B^0 \rightarrow J/\psi K_S^0$
- Large room for improvements of precision for the TD CPV measurements by far not limited by systematics
 long term project aiming for 50 ab⁻¹
- New challenges and new developments related to TD CPV analyses at Belle II
 - correlation of physics parameters with detector resolution function due to the tiny size of the beam spot
 - optimization of vertexing on tag side and traditional & alternative approaches for TD fits

Flavor tagging: B^0 or \overline{B}^0 on the tag side ?

arXiv:1808.10567

0.5

1.0

Both \bar{B}^0

 B^0

Observation of the control channel $B^0 \rightarrow J/\psi K^{*0} (K^-\pi^+)$

(0.008 GeV)

- about half of available data: 2.63 fb⁻¹

- two variables

$$\Delta E = E_B^* - E_{beam}^*$$
$$M_{bc} = \sqrt{E_{beam}^* - p^{*2}}$$

Yield of $B^0 \rightarrow J/\psi K^{*0} (K^- \pi^+)$: 48.6 ± 7.0 events

Note, this channel is not a CP eigenstate For CP studies one would need $B^0 \rightarrow J/\psi K^{*0} (K^0{}_S \pi^0)$

An example of alternative time-dependent CP violation fit of signal $B^0 \rightarrow J/\psi K_S^0$ and control $B^{\pm} \rightarrow J/\psi K^{\pm}$ channels for Belle II MC (500 fb⁻¹)

	$\tau(B^{\pm}) \ ps$	$ au(B^0) \ ps$	S	$\delta m(ps^{-1})$	α_{smear}
ass. $MC(BGx0) J/\psi(\mu\mu)K_S^0$		1.525	0	0	
$ass.MC(BGx0) J/\psi(ee)K_S^0$		1.525	0	0	
ass. $MC(BGx1) J/\psi(\mu\mu)K^{\pm}$	1.637				
expected	1.637	1.525	0.695	0.502	
$MC12b(BGx1) \ J/\psi(\mu\mu,ee)K_S^0$		1.554 ± 0.037	0.700 ± 0.059	0.536 ± 0.048	0 ± 0.63
$MC12b(BGx1) J/\psi(\mu\mu)K^{\pm}$	1.596 ± 0.036				0 ± 0.44
$MC12b(BGx1) \ combined$	1.596 ± 0.036	1.554 ± 0.037	0.701 ± 0.059	0.536 ± 0.048	0 ± 0.36

\rightarrow all results of the alternative TD CPV fits are consistent with the expectations within one sigma