

# The Belle II experiment: first data and physics prospect

## Marko Bračko

## University of Maribor &

Dedicated to 150 <sup>th</sup> Anniversary of Mendeleev's Periodic Table of Elements

1711-1765

EENTH

(On behalf of the Belle II Collaboration)

19<sup>th</sup> Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, 22<sup>nd</sup> – 28<sup>th</sup> August 2019

J. Stefan Institute, Ljubljana

## Outline



### **Legacy of B-Factories**

• **B-Factories**: High luminosity asymmetric-energy e<sup>+</sup>e<sup>-</sup> colliders (PEP-II/BABAR, KEKB/Belle), (A clean environment) operating at  $E_{CMS} \sim m_{Y(4S)} c^2 = 10.58 \, GeV$  to produce  $e^+ e^- \rightarrow \Upsilon (4S) \rightarrow B \overline{B}$ 



Marko Bracko : Belle II first data and prospect

#### **B-Factories physics milestones**



### **Physics motivation for increased luminosity**

- B-Factories legacy, complementarity to the LHCb
  - $\rightarrow$  The stage for the physics of Belle II:
  - Stress-testing the SM and sensitively probing new physics via, e.g.,
    - Precision CKM measurements: CP violation, meson mixing, decay rates;
    - Rare processes, e.g., flavour-changing neutral currents;
    - SM-forbidden processes, e.g., lepton-flavour non-universality, Lepton number/flavour violation;
    - Direct searches for light new states; Dark sector.

#### **Precision of CKM unitarity triangle:**



Marko Bracko : Belle II first data and prospect

Super Intensity Frontier: new luminosity record

**Increased sensitivity:** Belle II data sample will be **50-times** larger than Belle's, by collecting data from the SuperKEKB collider with **40-times** higher luminosity



## SuperKEKB Collider

Suoer

< FKB





#### **Belle II Collaboration**



The Belle II collaboration:

• Almost **950 researchers** from **26 countries** (**115 institutions**) have joined efforts to built and operate the detector, and explore the physics potential of collected data;

• Russia: <u>48 members</u> (BINP, MIPT, IHEP-Russia, LPI, MEPhI)



#### **Belle II detector**



Marko Bracko : Belle II first data and prospect



## **Belle II detector highlights (I)**

#### TOP: Barrel Particle Identification (uses Cherenkov radiation)

The paths of Cherenkov photons from a 2 GeV pion and kaon interacting in a TOP quartz bar.



Bar length = 2600 mm, width = 450 mm, thickness = 20 mm

#### Vertexing/Inner Tracking (6 layers)



Beampipe r= 10 mm DEPFET pixels Layer 1 r=14 mm Layer 2 r= 22 mm DSSD (double sided silicon detectors) Layer 3 r=38 mm Layer 4 r=80 mm Layer 5 r=115 mm Layer 6 r=140 mm



## **Belle II detector highlights (II)**



Note: Outer radius almost ~20% larger than at BABAR/Belle: Improved momentum resolution



|                      | Belle                            | Belle II                         |
|----------------------|----------------------------------|----------------------------------|
| Innermost sense wire | r=88mm                           | r=168mm                          |
| Outermost sense wire | r=863mm                          | r=1111.4mm                       |
| Number of layers     | 50                               | 56                               |
| Total sense wires    | 8400                             | 14336                            |
| Gas                  | He:C <sub>2</sub> H <sub>6</sub> | He:C <sub>2</sub> H <sub>6</sub> |
| Sense wire           | W(Φ30µm)                         | W(Φ30µm)                         |
| Field wire           | Al(φ120µm)                       | Al(Φ120µm)                       |



## **Belle II sub-detector installation**

- In 2010 Belle/KEKB operation was completed;
- Upgrade to Belle II/SuperKEKB started;
- 2015  $\rightarrow$  Jan 2019: Sub-detector installation.



Marko Bracko : Belle II first data and prospect



## **Startup of SuperKEKB/Belle II**



Phase 2: Full Belle II outer detector;
full superconducting final focus; no vertex detectors.
→ First collisions: <u>26 April, 2018</u>

**Phase 3**: Full Belle II detector, including VXD (Layer 2 PXD incomplete  $\rightarrow$  to be installed in 2020)  $\rightarrow$  First physics runs with collisions: <u>26 March</u>, <u>2019</u>



Marko Bracko : Belle II first data and prospect



### **First collision events**



Marko Bracko : Belle II first data and prospect



## **Beginning of Phase 3 ...**



Unfortunately only 2 months of collisions (March-July 2019).

| Parameter                                             | Achieved               | Target               |
|-------------------------------------------------------|------------------------|----------------------|
| I <sub>LER</sub> (max)(A)                             | 0.880                  | 2.6                  |
| I <sub>HER</sub> (max)(A)                             | 0.940                  | 3.6                  |
| β <sub>y</sub> * (mm)                                 | 2                      | 0.3                  |
| # bunches                                             | 1576                   | 2364                 |
| L <sub>peak</sub> (cm <sup>-2</sup> s <sup>-1</sup> ) | 6.1 x 10 <sup>33</sup> | 8 x 10 <sup>35</sup> |
| L(det OFF)                                            | 12 x 10 <sup>33</sup>  |                      |

L(peak) ~5.5 x 10<sup>33</sup>/cm<sup>2</sup>/sec ( $\beta_y^*$ =3mm) L(SuperKEKB peak, last week only) ~1.2 x 10<sup>34</sup>/cm<sup>2</sup>/sec ( $\beta_y^*$ =2mm)  $\rightarrow$  This is comparable to PEP-II best, but bkgs ~3x too large to turn on Belle II

## roof of principle: charged (lepton) tracks, photons



Marko Bracko : Belle II first data and prospect

Belle II

# Belle I PID performance in Phase 3: global hadron ID



(**NB.** Current MC simulation (MC12, July 2019) does not include embedded random triggers, which correctly represent the effect of beam background and electronic noise in CDC, ARICH and TOP.)

Marko Bracko : Belle II first data and prospect

#### **Proof of principle: Charm reconstruction**



Marko Bracko : Belle II first data and prospect



## Finding **B**B pairs



Marko Bracko : Belle II first data and prospect



#### Signal for $B \rightarrow J/\psi X$ in Phase 3 data



~1/2 of Phase 3 data: Clear signals for  $B \rightarrow J/\psi X$  is seen. (For e<sup>+</sup>e<sup>-</sup> pairs the bremsstrahlung recovery is included).

Belle II has good PID performance for both electrons and muons.



#### Re-discovery of B mesons (in $\sim 1/2$ of Phase 3 data)



2200 Fully reconstructed hadronic B decays

Clear demonstration of Belle II capabilities for doing B physics. (NB. Modes with charged kaons and pions, as well as final states with K<sub>s</sub> mesons and neutral particles are efficiently reconstructed.)



Evidence of  $B^- \rightarrow D^0 K^-$ 





Demonstration of Belle II high momentum PID capability on a decay mode, which will be used for future determinations of the unitarity angle  $\gamma$  (or  $\phi_3$ ).



Evidence of  $B^0 \rightarrow D^- K^+$ 





Demonstration of Belle II high momentum PID capability on a decay mode, which will be used for future determinations of the unitarity angle  $\gamma$  (or  $\varphi_3$ ).

# Belle II

#### Study of a radiative B decay: $B^0 \rightarrow K^{*0} \gamma$



Marko Bracko : Belle II first data and prospect

S Time-dependent measurements at Belle II



- Belle II demonstrates also the capability to perform time-dependent studies;
- There will be a dedicated talk this afternoon (in Parallel sect. A):
   V.Chekelian: First look at the time-dependent CP violation using early Belle II data

Belle II



#### Dark sector at Belle II

**Dark Sector:** Previously these studies were limited by triggering, QED backgrounds and theoretical imagination.

Now there are new possibilities of triggering, more bandwidth.

Belle II First Physics. A novel result on the dark sector (vector part.  $Z' \rightarrow$  nothing) recoiling against a pair of muons *or* an electron-muon pair. (Both possibilities are poorly constrained at low Z' mass and in the first case, could explain the muon g-2 anomaly.)

Also examine a lepton-flavour-violating NP signature in the dark sector.





#### Dark sector at Belle II: Search for Z'

We search for Z' in

$$e^+e^- \rightarrow \mu^+\mu^- Z'(\rightarrow Invisible)$$

process.

 $Z^\prime$  will create a bump in recoil mass of the event.



Search for 
$$e^+e^- \rightarrow \mu^+\mu^- Z$$
,  $Z \rightarrow nothing$ 



#### and unblinding. Preliminary results are out → aiming at publication.

Results are compatible with backgrounds; No excess above  $3\sigma$  is seen. First upper limit on coupling g' is obtained.

Marko Bracko : Belle II first data and prospect



#### Dark sector at Belle II: Search for LFV Z'





## **Summary and Conclusions**

- There has been highly successful program of machines with increased luminosity since the 1980s.
- The SuperKEKB colider and Belle II experiment aiming to continue the tradition with performance at a new level:
  - 40-times higher luminosity with respect to the previous record,
  - the most advanced, 21<sup>st</sup>-century detector technology.
- This will enable Belle II to explore NP on the Luminosity/Intensity Frontier, which is different/complementary to the LHC high p<sub>T</sub> experiments (Energy Frontier).
- Competition and complementarity with the LHCb experiment.
- Phase 2 data-taking finished successfully: calibration, particle re-discoveries, tagging, ...
- Phase 3 started in March 2019 and finished on 1<sup>st</sup> July 2019:
- Belle II collected data sample corresponding to L<sub>int</sub> =6.49 fb<sup>-1</sup>; first results shown.
- Operation will resume in October 2019 and continue until July 2020.

#### Our results are eagerly awaited by the HEP community.



**Backup Slides** 



## Long term prospects of Belle II

- Based on <u>The Belle II Physics Book</u> (<u>https://arxiv.org/abs/1808.10567</u>)
- Outcome of the B2TIP (Belle II Theory Interface) Workshops, with emphasis on New Physics (NP) reach.
   (Strong participation from theory community, lattice QCD community and Belle II members.
   689 pages, published by Oxford University Press)

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26

The Belle II Physics Book



Marko Bracko : Belle II first data and prospect