

Istituto Nazionale di Fisica Nucleare SEZIONE DI TRIESTE

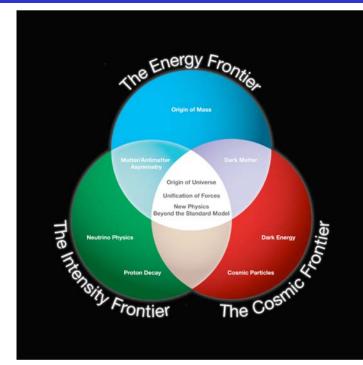
Belle II experiment: status and prospects

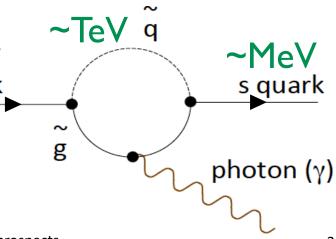
Lorenzo Vitale – Univ. & INFN Trieste, Italy
On behalf of the Belle II Collaboration
8th ICNFC 2019, Crete, Greece, 2019.08.21-29

Talk outline

- Introduction:
 - intensity frontier, flavor physics, B-factories
- Collider & Detector = Luminosity & Background challenge*
- Highlights from first physics run spring 2019
 - Detector performance
 - First results**
- Prospects

See also:


- *P. Bambade "The SuperKEKB/BELLE II as a demonstrator of future colliders"
- **P. Goldenzweig "First look at CKM parameters from early Belle II data"
- **I. Komarov "Dark Sector Physics with Belle II: first results and prospects"


Intensity Frontier & Flavor Physics

Belle II is a leading **Flavor Physics** experiment at the **Intensity Frontier**

In three fold approach of near-mid term particle physics, Flavor Physics explores its goals with highest reachable intensity, being sensitive to New Physics - Beyond the Standard Model — up to the TeV scale in loop diagram

Typical example: a new particle that may appear in a loop diagram can deviate the related observables from the SM predictions

Flavor Physics to BSM

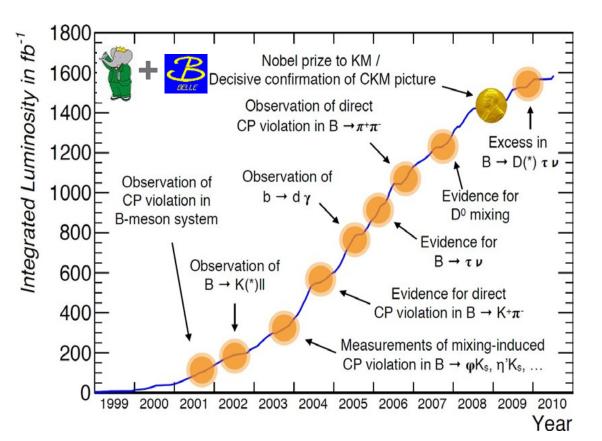
Widely endorsed approach

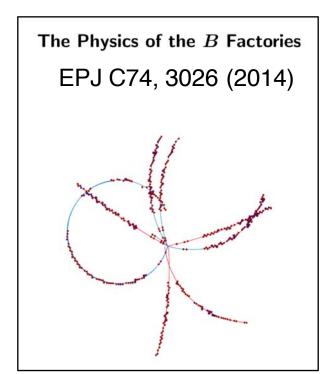
e.g. European Particle Physics Strategy Update 2018-2020 Summary talk from Zoccoli & Gavela Granada, 2019 May

Flavor Physics → BSM

- EW Hierarchy... driven by the top in SM
- Strong CP problem
- Origin of weak CP and matter-antimatter asymmetry
- Flavour puzzle (quarks, charged leptons, neutrinos)

Flavour is the usual graveyard of BSM electroweak theories


LHCb is the other leading **Flavor Physics** experiment


Belle II complements and competes with LHCb, similar goals, but different environment

e⁺e⁻ B-factory legacy

Belle II collects the inheritance of previous successful experiments at the e⁺e⁻ B-factory: BaBar@PEPII and Belle@KEK, in total 1.6 ab⁻¹

Success culminated in 2008

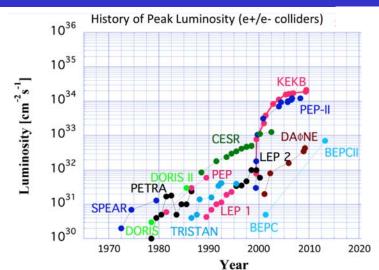
© The Nobel Foundation Photo: U. Montan Makoto Kobayashi

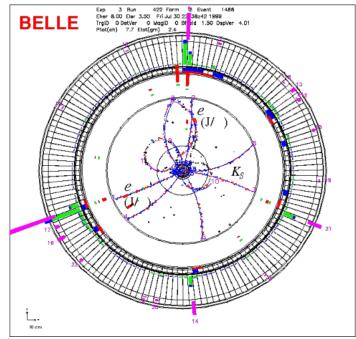
© The Nobel Foundation Photo: U. Montan Toshihide Maskawa

e⁺e⁻ B-factory: keys of the success

Colliders performance

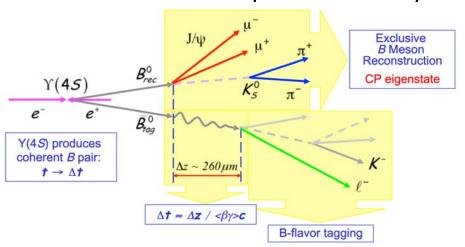
Endless order-of-magnitude improvements in luminosity
But also long term steady operations and machine background control

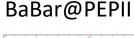

e⁺e⁻ clean initial state


Coherent, well defined, without additional interactions allowing low physics backgrounds, high trigger efficiency, kinematic constrains

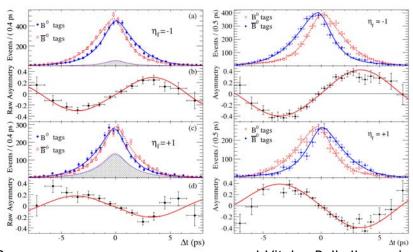
Detector performance

Neutral, DAQ


Precise, efficient, fast, hermetic - as much as possible – in all aspects: Tracking, Vertexing, Particle ID,

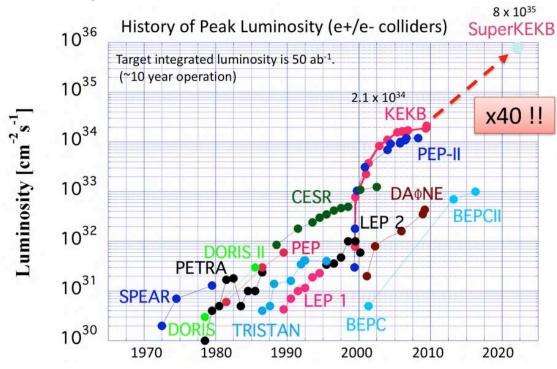


An example: Time Dependent CP Violation from discovery to precision measurements


Asymmetric beam energies allow measurement of vertex separation: It allows to see time dependent CPV by interference between decay and mixing

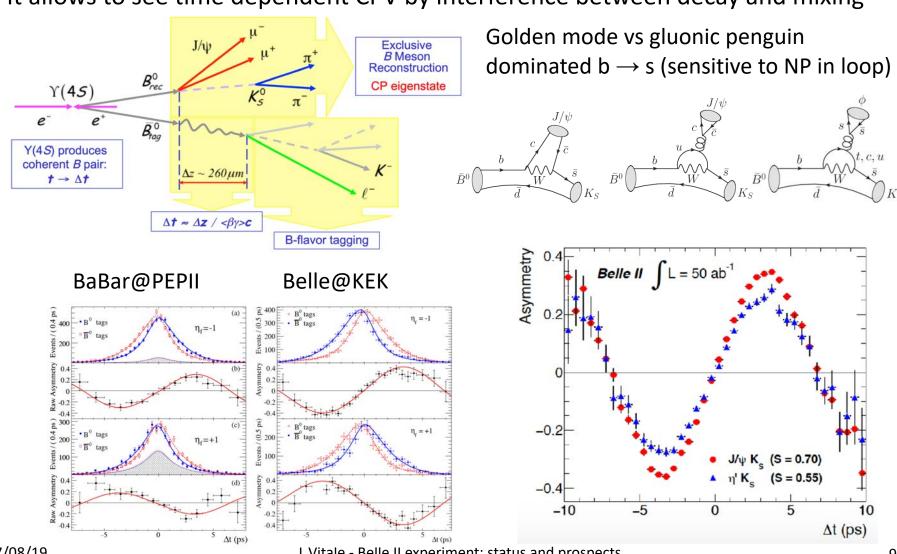
 $\Delta z \cong c\beta\gamma\tau$ BaBar $\Delta z = 260 \mu m$ Belle $\Delta z = 200 \mu m$ Belle II $\Delta z = 130 \mu m$

Belle@KEK

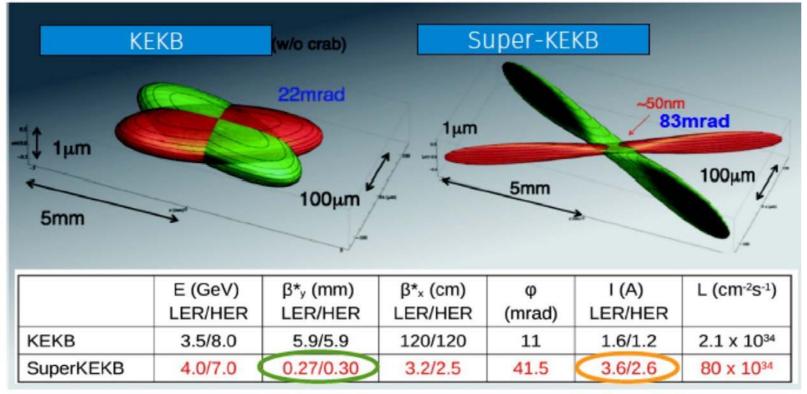

So why another e⁺e⁻ B-factory?

Still several goals can be achieved, the among others:

- Search/Limits of/on New Physics Beyond Standard Model
- Precision measurements of CKM matrix elements
- CPV: TD in B decays, direct
- Rare or forbidden B,D, τ decays

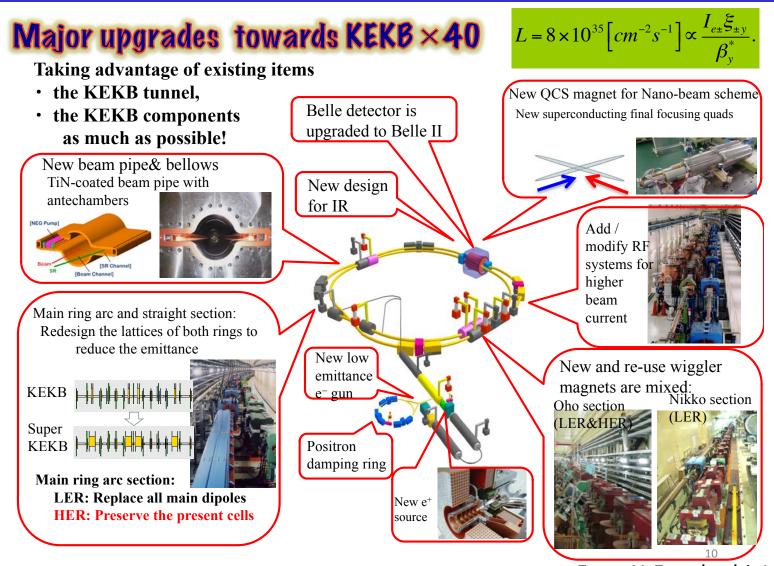

Dark sector searches

Belle II & SuperKEKB can raise the challenge with an increase of peak luminosity x40!!


Time Dependent CP Violation at 50 ab⁻¹ $J/\psi Ks$ vs $\eta' Ks$

Asymmetric beam energies allow measurement of vertex separation: It allows to see time dependent CPV by interference between decay and mixing

SuperKEKB: how to gain x40?


A x20 gain from "nano beam" scheme, proposed by P. Raimondi for SuperB: Beam size at interaction from (100x2) μm^2 KEKB to (10,000x50) nm^2 SuperKEKB Lower emittance & beta*, higher crossing angle, large Piwinski angle Another x2 gain by increasing beam currents

factor 20

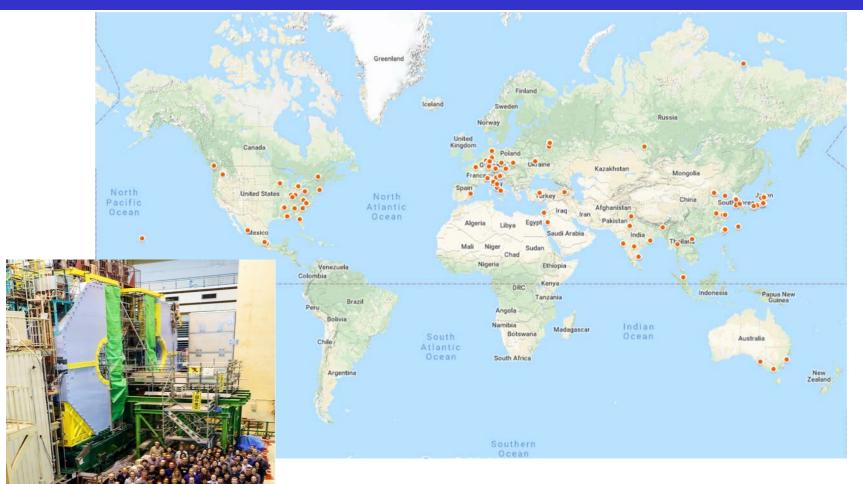
factor 2-3

SuperKEKB: major upgrade

Change beam energies to solve the problem of short LER lifetime

From Y. Funakoshi, IAS2017

Belle II Detector

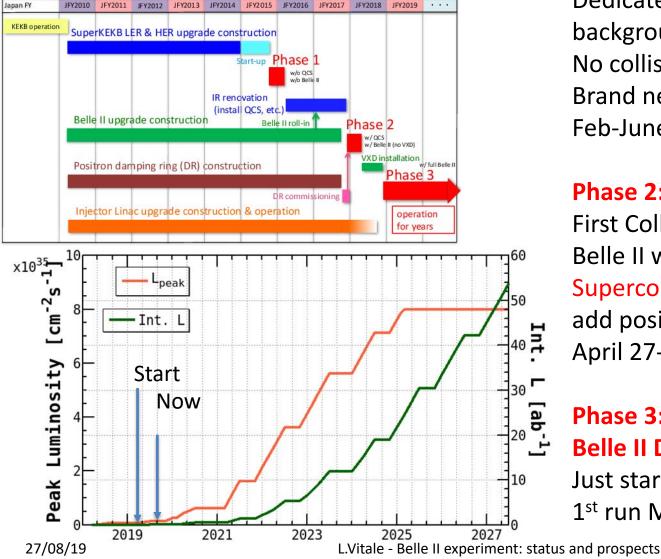

Deal with higher background (x10-20), Radiation **Upgraded KLong and Muon detector:** damage, higher occupancy, higher event rates Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's (end-caps, inner 2 (L1 trigg. $0.5 \rightarrow 30 \text{ kHz}$) barrel layers) **Upgraded EM Calorimeter:** CsI(TI), waveform sampling (barrel+ endcap) **New Particle Identification** TOP detector system (barrel) electrons (7 GeV) Prox. focusing Aerogel RICH (fwd) New beryllium beam pipe 20mm diameter New VerteX Detector ~2 layers pixels DEPFET # 4 layers strips DSSD positrons (4 GeV) New Central Drift Chamber Overall improved He(50%):C₂H₆(50%), small cells, long performance & hermeticity lever arm, fast electronics (Core Lower boost mitigated by

element)

Belle II TDR, arXiv: 1011.0352

improved vertexing

Belle II international collaboration



Belle II now has ~947 researchers from 112 institutions in 26 countries

After construction & commissioning runs: Physics run (started in Spring 2019)

SuperKEKB/Belle II schedule

2010

Phase 1: Optics Commissioning
Dedicated detectors for
background studies
No collisions, no Belle II
Brand new 3 km positron ring.
Feb-June 2016

Phase 2: Pilot run
First Collisions (0.5 fb⁻¹).
Belle II w/o VXD (just a sector)
Superconducting Final Focus,
add positron damping ring,
April 27-July 17, 2018

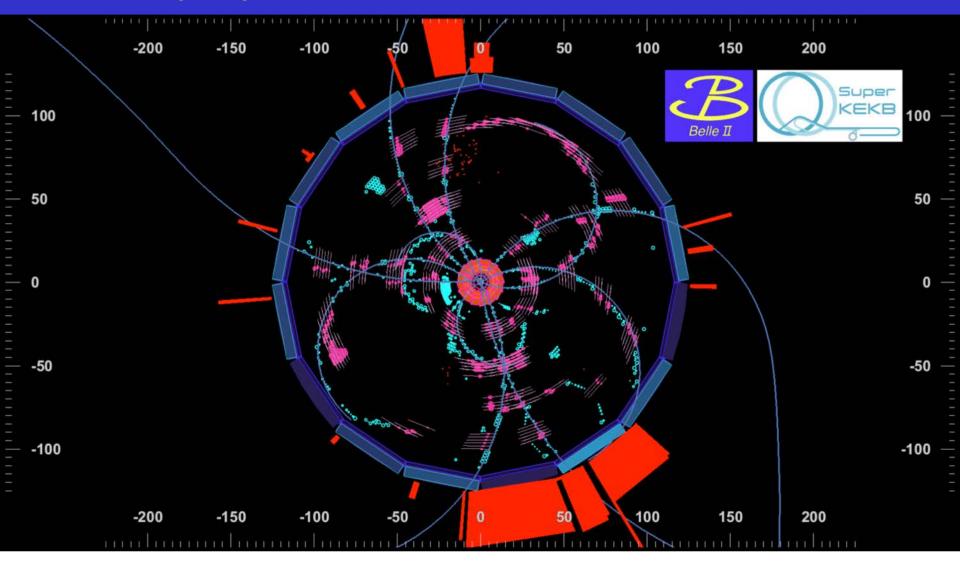
Phase 3: → Physics run with Full Belle II Detector

Just started 1st run March 27-July 1st, 2019

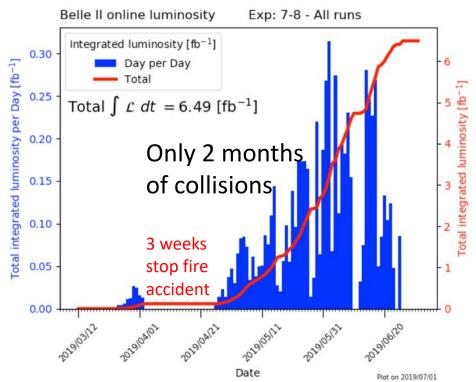
Belle II/SuperKEKB Phase 3 Goals

Early <u>aims</u>: Resolve the problems uncovered in the Phase 2 pilot run. Demonstrate SuperKEKB <u>Physics</u> running with acceptable backgrounds, and all the detector, readout, DAQ and trigger capabilities of Belle II including tracking, electron/muon id, high momentum PID, and especially the *ability to do time-dependent measurements needed for*

CP violation.


Belle II VXD ~6 layers installed on Nov 21, 2018 PXD L1 & two ladders of L2 SVD (4 layers)

Carry out dark sector searches/measurements as well.


Long term: Integrate the world's largest e⁺e⁻ data samples and observe or constrain New Physics.

From T. Browder, LP 2019

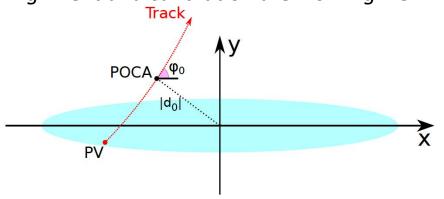
1st physic run - 1st B-B like event

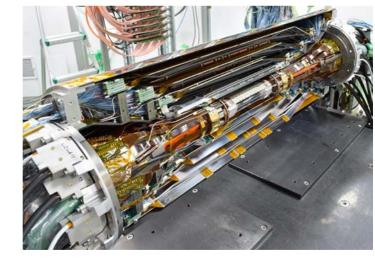
First run, Spring 2019, 3 2 months

Some issues solved e.g. continuous injection works well Challenge: keeping bkg under control → Beam abort crucial

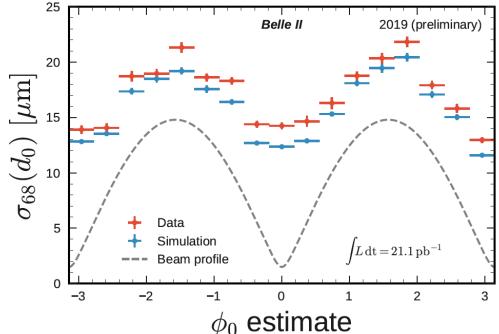
Results shown are based on a smaller data set

Progressively squeezing β_y^* to increase L

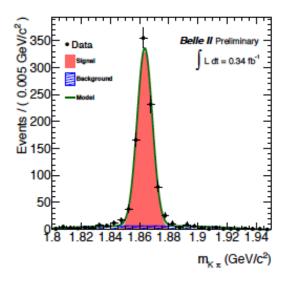

 L_{peak} (in physics) ~6 x 10³³/cm²/s β_y *=3mm


 L_{peak} (det OFF) ~1.2 x 10³⁴/cm²/s β_y *=2mm Close to PEP-II best, but bkgs X3 too large to turn on Belle II

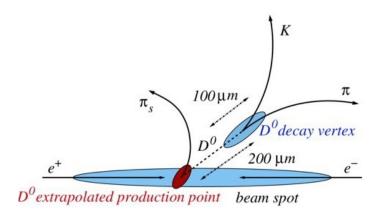
Parameter	Achieved	Target
I _{LER} (max)(A)	0.880	2.6
I _{HER} (max)(A)	0.940	3.6
β_y^* (mm)	2	0.3
# bunches	1576	2364
L _{peak} (cm ⁻² s ⁻¹)	6.1×10^{33}	8 x 10 ³⁵
L(det OFF)	12 x 10 ³³	3 / 1 . 3


VXD resolution in impact parameter distributions in two-track events

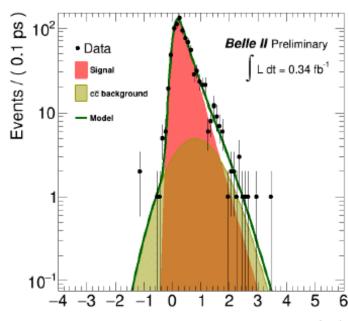
Alignment and calibration are working well



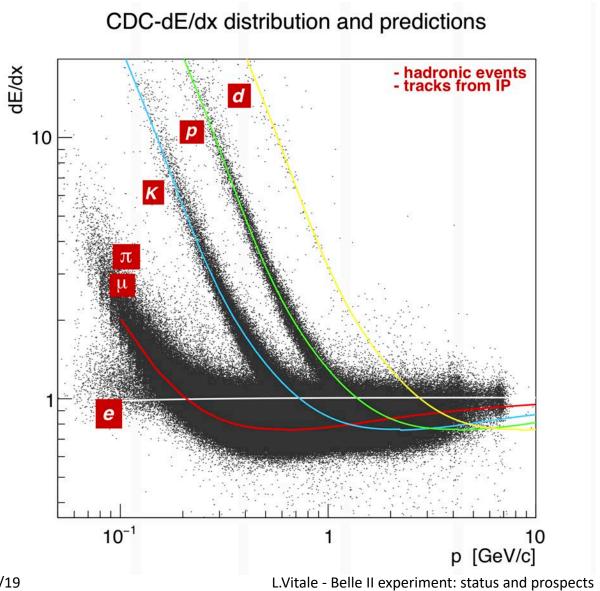
Width of impact parameter resolution distribution


VXD resolution in impact parameter ~14 μm x2 better than Belle PXD 1st layer R=14mm

D⁰ lifetime: demonstration of VXD performance



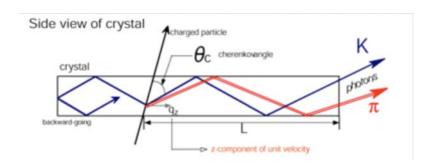
Uses a small data set ~1/15



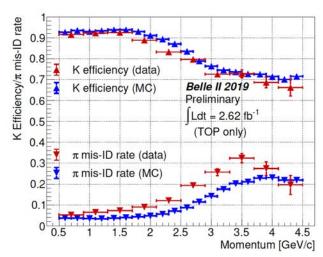
$$\tau_{D^0} = 370 \pm 40 (stat)$$
 fs

dE/dx in CDC

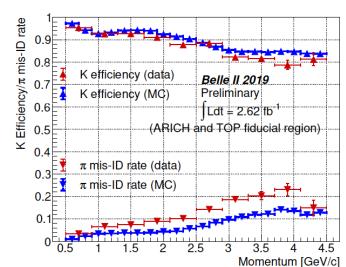
PID performance

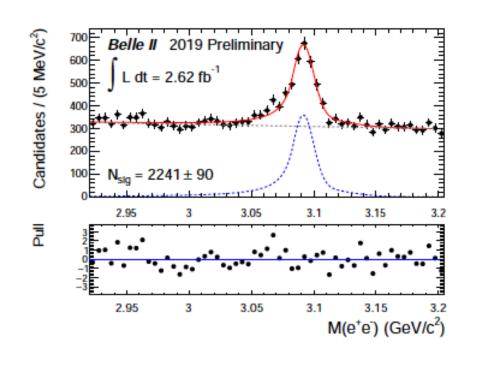

Particle IDentification $(\pi, K, e, \mu, ...)$ is crucial:

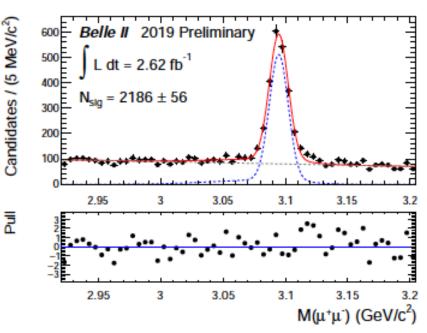
- particle reconstruction
- B-flavour tagging


Contributions from sub-detectors: here an example of K efficiency & mis-ID, from TOP (barrel) only and combined with CDC dE/dx, ARICH (forward endcap)

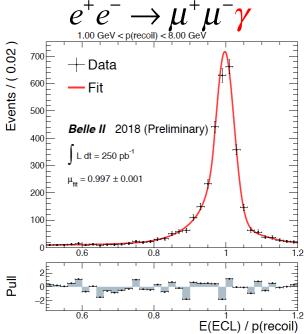
Measured on a control sample:

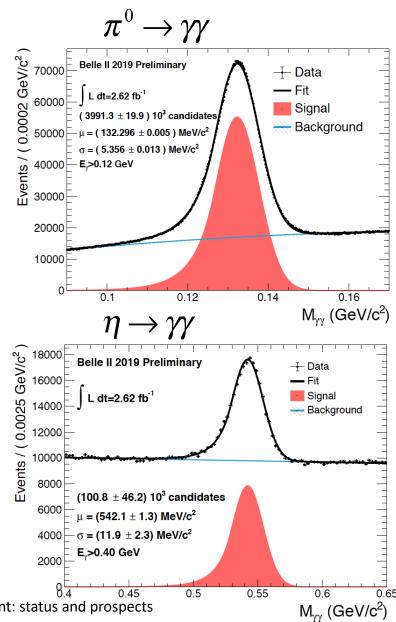

$$D^{*+} \to D^0 \pi_s^{\; +}; D^0 \to K^- \pi^+$$
 compared with MC expectations


K ID from TOP only

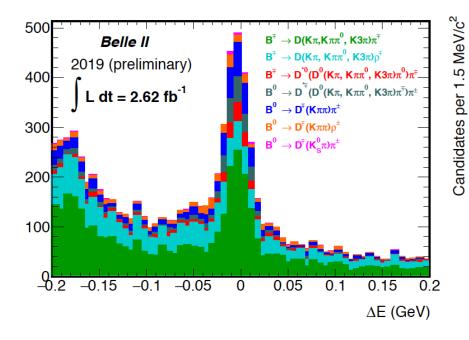


K ID from CDC, TOP, ARICH

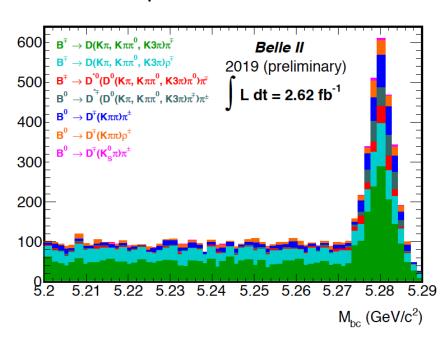

$J/\psi \rightarrow e^+e^-, \mu^+\mu^-$: equally good



Photons


Single Photon Lines \rightarrow ISR γ for Dark sector More on Dark in I.Komarov talk

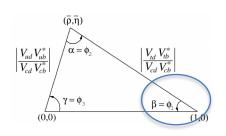
$B \rightarrow D^{(*)}h$ exclusive reconstruction

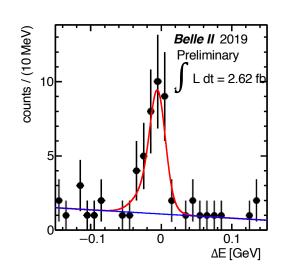

Usual two the kinematical variables

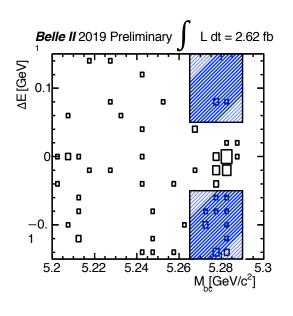
$$\Delta E = E_{cm} / 2 - E_{recon}$$

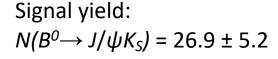
beam-constrained invariant mass

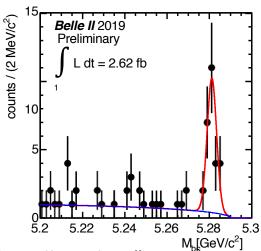
$$M_{bc} = \sqrt{(E_{cm}/2)^2 - p_{recon}^2}$$




2200 Fully reconstructed hadronic B decays in 2.6fb⁻¹


Candidates per 6 MeV


$B^0 \rightarrow J/\psi Ks$


Golden CP eigenstate mode for CPV, CKM angle $\sin 2\beta$ ($\sin 2\phi_1$)

More in P. Goldenzweig "First look at CKM parameters from early Belle II data"

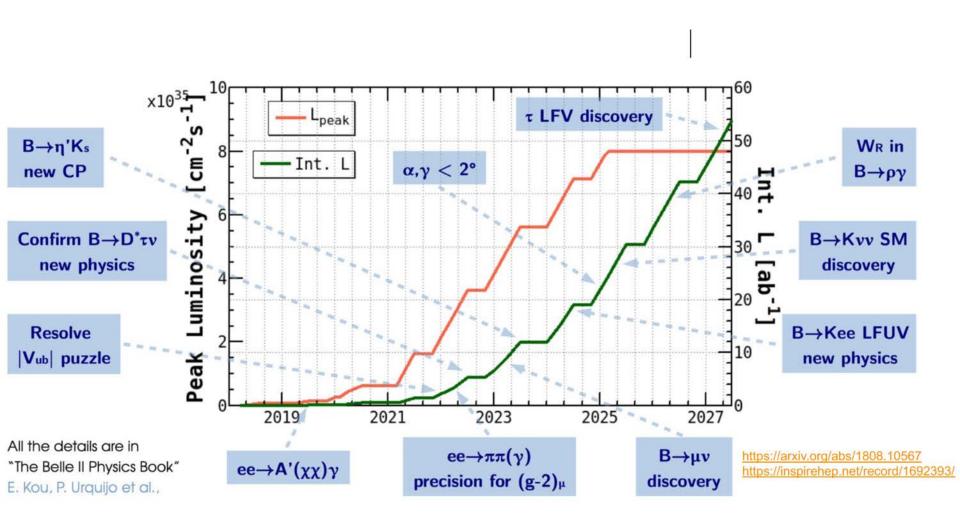
Prospects: Physics

https://arxiv.org/abs/1808.10567

Outcome of the B2TIP (Belle II Theory Interface) Workshops Emphasis is on New Physics (NP) reach.

Strong participation from theory community, *lattice QCD community* and Belle II experimenters. 689 pages, submitted to PTEP, Oxford Academic

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26


The Belle II Physics Book

```
E. Kou<sup>74,¶,†</sup>, P. Urquijo<sup>143,§,†</sup>, W. Altmannshofer<sup>133,¶</sup>, F. Beaujean<sup>78,¶</sup>, G. Bell<sup>120,¶</sup>, M. Beneke<sup>112,¶</sup>, I. I. Bigi<sup>146,¶</sup>, F. Bishara<sup>148,16,¶</sup>, M. Blanke<sup>49,50,¶</sup>, C. Bobeth<sup>111,112,¶</sup>, M. Bona<sup>150,¶</sup>, N. Brambilla<sup>112,¶</sup>, V. M. Braun<sup>43,¶</sup>, J. Brod<sup>110,133,¶</sup>, A. J. Buras<sup>113,¶</sup>, H. Y. Cheng<sup>44,¶</sup>, C. W. Chiang<sup>91,¶</sup>, M. Ciuchini<sup>58,¶</sup>, G. Colangelo<sup>126,¶</sup>, H. Czyz<sup>154,29,¶</sup>, A. Datta<sup>144,¶</sup>, F. De Fazio<sup>52,¶</sup>, T. Deppisch<sup>50,¶</sup>, M. J. Dolan<sup>143,¶</sup>, J. Evans<sup>133,¶</sup>, S. Fajfer<sup>107,139,¶</sup>, T. Feldmann<sup>120,¶</sup>, S. Godfrey<sup>7,¶</sup>, M. Gronau<sup>61,¶</sup>, Y. Grossman<sup>15,¶</sup>, F. K. Guo<sup>41,132,¶</sup>, U. Haisch<sup>148,11,¶</sup>, C. Hanhart<sup>21,¶</sup>, S. Hashimoto<sup>30,26,¶</sup>, S. Hirose<sup>88,¶</sup>, J. Hisano<sup>88,89,¶</sup>, L. Hofer<sup>125,¶</sup>, M. Hoferichter<sup>166,¶</sup>, W. S. Hou<sup>91,¶</sup>, T. Huber<sup>120,¶</sup>, S. Jaeger<sup>157,¶</sup>, S. Jahn<sup>82,¶</sup>, M. Jamin<sup>124,¶</sup>, J. Jones<sup>102,¶</sup>, M. Jung<sup>111,¶</sup>, A. L. Kagan<sup>133,¶</sup>, F. Kahlhoefer<sup>1,¶</sup>, J. F. Kamenik<sup>107,139,¶</sup>, T. Kaneko<sup>30,26,¶</sup>, Y. Kiyo<sup>63,¶</sup>, A. Kokulu<sup>112,138,¶</sup>, N. Kosnik<sup>107,139,¶</sup>, A. S. Kronfeld<sup>20,¶</sup>, Z. Ligeti<sup>19,¶</sup>, H. Logan<sup>7,¶</sup>, C. D. Lu<sup>41,¶</sup>, V. Lubicz<sup>151,¶</sup>, F. Mahmoudi<sup>140,¶</sup>, K. Maltman<sup>171,¶</sup>, S. Mishima<sup>30,¶</sup>, M. Misiak<sup>164,¶</sup>,
```

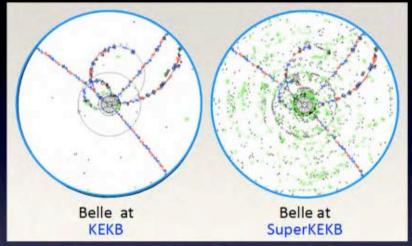
Physics program with 50ab⁻¹

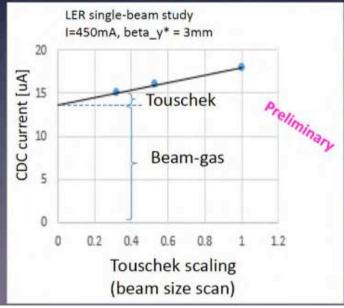
Observables	Expected the. accu-	Expected	1808.1056	/_	
Observables	racy	exp. uncertainty	Facility (2025)		
UT angles & sides					
ϕ_1 [°]	***	0.4	Belle II	- 1	
ϕ_2 [°]	**	1.0	Belle II	- 1	
ϕ_3 [°]	***	1.0	LHCb/Belle II	L	Dracician CVM Unitarity Triangle
$ V_{cb} $ incl.	***	1%	Belle II		Precision CKM Unitarity Triangle
$ V_{cb} $ excl.	***	1.5%	Belle II	- 1	
$ V_{ub} $ incl.	**	3%	Belle II	- 1	
$ V_{ub} $ excl.	**	2%	Belle II/LHCb		
CP Violation			*		
$S(B \to \phi K^0)$	***	0.02	Belle II	- 1	CD \ /'
$S(B \to \eta' K^0)$	***	0.01	Belle II	L	CP Violation in b \rightarrow s penguin decays
$A(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II	г	1 0 7
$A(B \to K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II		
(Semi-)leptonic		5 Section 6 15		-5	
$\mathcal{B}(B \to \tau \nu) [10^{-6}]$	**	3%	Belle II		
$\mathcal{B}(B \to \mu\nu) [10^{-6}]$	**	7%	Belle II	L	15 · · · · · · · · · · · · · · · · · · ·
R(B o D au u)	***	3%	Belle II		(Semi-)leptonic B decays
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb		
Radiative & EW Penguins				-5	
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II		
$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	***	0.005	Belle II	- 1	
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II	- 1	
$S(B \to \rho \gamma)$	**	0.07	Belle II		Radiative & EW Penguins
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II		Madiative a Evv i eliganis
$\mathcal{B}(B \to K^* \nu \overline{\nu}) [10^{-6}]$	***	15%	Belle II	- 1	
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II	- 1	
$R(B \to K^*\ell\ell)$	***	0.03	Belle II/LHCb		
Charm				_	
$\mathcal{B}(D_s \to \mu \nu)$	***	0.9%	Belle II		
$\mathcal{B}(D_s \to \tau \nu)$	***	2%	Belle II		
$A_{CP}(D^0 \to K_S^0 \pi^0)$ [10 ⁻²]	**	0.03	Belle II	_	Charm
$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***	0.03	Belle II		Charin
$\phi(D^0 \to K_S^0 \pi^+ \pi^-) \ [^\circ]$	***	4	Belle II		
Tau		(77)	Lone II		
$ au o \mu \gamma \ [10^{-10}]$	***	< 50	Belle II	7	Lanton flavor violating = docsys
$ au o e\gamma \ [10^{-10}]$	***	< 100	Belle II	-	Lepton flavor violating τ decays
$\tau \to \mu\mu\mu \ [10^{-10}]$	***	< 3	Belle II/LHCb		L Dark sastar & manah masra
$i \rightarrow \mu\mu\mu$ [10]		_ 3	Delle 11/LHC0	_	+ Dark sector & much more

Prospects: an (optimistic) future roadmap

From F. Forti, EPS-HEP 2019

Prospects: beam backgrounds


e+e- colliders are "clean", but... at high luminosity, beam-induced backgrounds become a challenge


at the highest luminosities, QED backgrounds will dominate:

$$e^+e^- \rightarrow e^+e^-\gamma$$

 $e^+e^- \rightarrow e^+e^-e^+e^-$

at present, single beam backgrounds are predominant, higher in LER:

- beam-gas (residual gas in beam pipe)
- Touschek (intra-bunch scattering)
- injection-induced
- "dust events", occasional large losses
 CDC HV trips with large bkgd
 beam abort protection against radiation spikes
 simulations & collimator studies

From L. Lanceri, SSI 2019

Prospects: Detector improvement program

Short term:

- Replacement of TOP PMTs with ALD PMTs
- Replacement of the PXD with complete detector
- DAQ upgrade

Medium term:

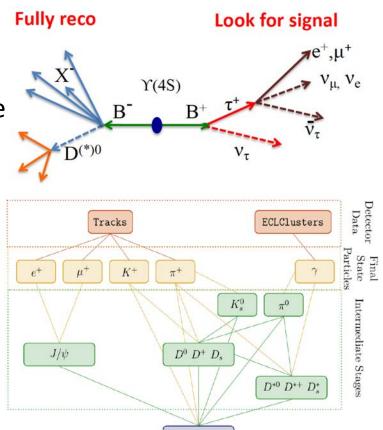
 Looking at options to make the detector more robust against background and radiation bursts

Longer term:

• Started looking at luminosity upgrade possibilities e.g. Belle II VXD open Workshop https://indico.cern.ch/event/810687/

Conclusions

- Flavor physics at high luminosity e⁺e⁻ B-factory offers a very inviting and challenging menu
- The first physics run of Belle II at SuperKEKB in Spring 2019 has just completed with 6.5 fb⁻¹
- Detector and accelerator initial performances are good, but the road is still very long to achieve the goals
- Luminosity and beam backgrounds are the main challenges
- Looking forward for more data


BACK-UP SLIDES

FEI Full Event Interpretation technique

based on boosted decision trees (BDTs, a machine learning technique)

- Fully reconstruct B decays in many many modes to reduce backgrounds and provide tagging
- Useful for channels with weak exp. signature
 - Missing momentum (many neutrinos in the final state)
 - Inclusive analyses
- Tag with semileptonic decays
 - PRO: Higher efficiency ϵ tag $\sim 1.5\%$
 - CON: more background, B momentum unmeasured
- Tag with hadronic decays
 - PRO: cleaner events, B momentum reconstructed
 - CON: smaller efficiency *E*tag ~ 0.3%

T.Keck, et al. Comput Softw Big Sci (2019) 3: 6.

 B^0 B^+

Belle II vs LHCb

From J. Libby – Anomalies 2019

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹) by ~2024	~25	~50,000
Background level	Very high	Low
Typical efficiency	Low	High
π^0 , K_S reconstruction	Inefficient	Efficient
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Very good
Collision spot size	Large	Tiny
Heavy bottom hadrons	B_s , B_c , b -baryons	Partly B _s
au physics capability	Limited	Excellent
B-flavor tagging efficiency	3.5 - 6%	36%

Phase 3 Highlights

SUPERKEKB goals achieved:

- ✓ "nano beam scheme" demonstrated in phase 2, now progressing squeezing β_x^*/β_y^* to 80/2mm
- ✓ Peak luminosity 1.24 x 10^{34} cm⁻² s⁻¹ (0.56 in Phase 2, goal 80 x 10^{34})

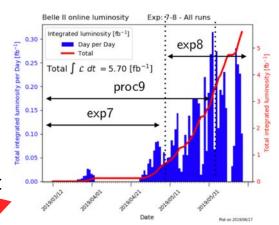
Luminosity in physics run 0.5 x 10³⁴ cm⁻² s⁻¹, limited by background

✓ Specific luminosity 2.9 x 10³¹ cm⁻²s⁻¹/mA², but beam blow up effect

✓ Continuous injection for May & June

Belle II: Integrated luminosity 6.4 fb⁻¹ (target 11 fb⁻¹)

- ✓ Very good detector performance
- ✓ Excellent SVD cluster efficiency (99.5%) and position resolution


ISSUES

Fire accident, 3 weeks stop

Beam background → in progress, diamonds taken as reference

QCS quenches \rightarrow diamonds drastically reduce their rate

Background accidents → in one instance diamonds promptly (10 us) issued abort, but huge beam losses, collimator and VXD damages

efficiency	u/P	v/N
layer3	(99.75 ± 0.02)%	(98.46 ± 0.05)%
layer4	(99.66 ± 0.04)%	(99.37 ± 0.06)%
layer5	(99.62 ± 0.06)%	(99.43 ± 0.08)%
layer6	(99.3 ± 0.1)%	(99.3 ± 0.1)%

Other Belle II/SKB talks in this conference

- Aug. 22 15.30 Pablo Goldenzweig: First look at CKM parameters from early Belle II data
- Aug. 23 8.30 Philippe Bambade: The SuperKEKB/BELLE II as a demonstrator of future colliders
- Aug. 26 15.20 Ilya Komarov: Dark Sector Physics with Belle II: first results and prospects