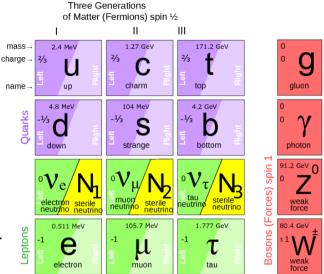
Proposed search for a ν_{τ} **-mixing heavy neutrino**


Minakshi Nayak (Tel Aviv University)

Anomalies 2019, IIT Hyderabad July 18, 2019

Heavy Neutral Leptons (N)

- Neutrino oscillation opened a new window in the search for new physics.
- Neutrino masses can be incorporated to SM by introducing RH (Majorana) neutrinos
- Being neutral under the SM, they can have Majorana mass term
- N is mostly the RH neutrino, but small LH compor allow it to interact with SM particles
- N in GeV scale as allows to solve some of the outstanding problems of the SM.
 - Origin of the SM neutrino masses (seesaw mechanism)
 arXiv:hep-ph/0503065
 - non-baryonic darkmatter
 - baryogenesis
- N are sterile: Interacts with v_{SM} through mixing: N $\leftrightarrow v_{SM}$
- Long lifetime of N: due to small $\rm M_{_N}$ and small mixing

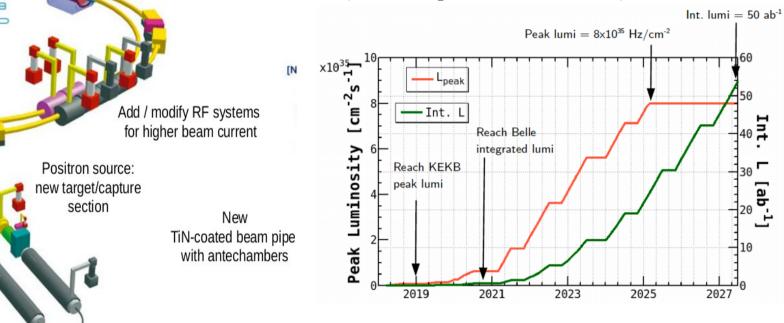
2

>114 GeV

spin 0

Status of Direct Searches of HNL

<u>Direct Searches of HNL in tau Decays</u> <u>at B-factories</u>


Proposed search of N-mixing with τ at B-factories with $M_N < M_T$

- Best place to search for τ decay is B-factories
- $\sigma(e^+e^- \to \tau^+\tau^-) \sim 0.9 \text{ nb.}$
- Belle: N($e^+e^- \rightarrow \tau^+\tau^-$) = 8.8 x10⁸
- BaBar: N($e^+e^- \rightarrow \tau^+\tau^-$) = 4.6 x10⁸
- Belle II with 50 ab^{-1} : N($e^+e^- \rightarrow \tau^+\tau^-$) = 4.6 x10¹⁰ by 2027.

SuperKEKB and Belle II

x40 higher instantaneous luminosity than Belle:

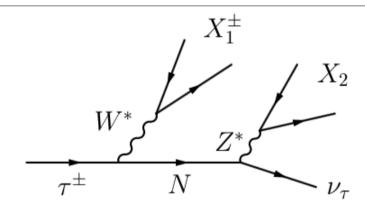
- Double beam current
- Major increase by small beam size "nano-beam" (vertical spot size ~50 nm !!)

Belle II detector components needed for this search

- Increased tracking volume compared to Belle in both SVD and CDC $\Rightarrow \sim 30\%$
- Improved PID with better K/π separation relative to Belle.
- Belle II by 2027: 50 ab⁻¹ data

Belle II

Inject low emittance


positrons / electrons

Damping ring

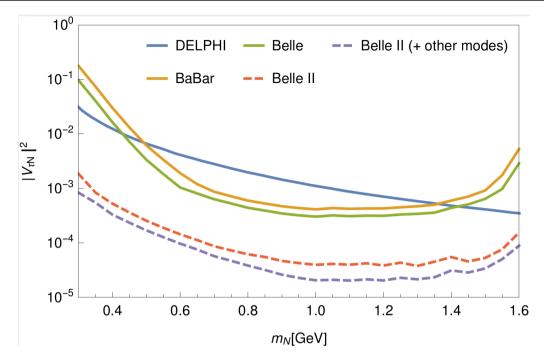
New interaction region

Sensitivity study at Belle II

- Since $|U_{_{\tau N}}| >> |U_{_{e N}}|$, $|U_{_{\mu N}}|$ and $m_{_N} < m_{_{\tau}}$, N must decay via the neutral-current(NC) decay $N \rightarrow v_{_{\tau}} X_{_2}$, mediated by the Z*
- Sensitivity for $|U_{\tau N}|$ from: $N = N_{\tau} \times B(\tau \rightarrow X_1 N) \times B(N \rightarrow v_{\tau} X_2) \times a \times \epsilon$

- HNL production: through decays of $\tau \to X_1 v_{\tau}$ (X_1 restricted here to π^{\pm}, π^{\pm} π^0) and v_{τ} mixes with N with mixing $|U_{N\tau}|^2$
- HNL Decays: $N \rightarrow v_{\tau} X_2$ (X₂ restricted to $\mu^+ \mu^-$, $e^+ e^-$)
- NC is used only to make V0
- Hadronic X₂ avoided here since it requires correct accounting of the fragmentation.. It could be used in the final analysis
- Long lifetime of N: $c\tau_N \propto |U_{N\tau}|^{-2} m^{-5}_{N\tau}$

Background Suppression


Decay processes	$\sigma[\mathrm{nb}]$
$e^+e^- \rightarrow B^+B^-$	0.525
$e^+e^- \rightarrow B^0 \bar{B}^0$	0.525
$e^+e^- \rightarrow u\bar{u}$	1.61
$e^+e^- \rightarrow d\bar{d}$	0.4
$e^+e^- \rightarrow s\bar{s}$	0.38
$e^+e^- \to c\bar{c}$	1.3
$e^+e^- \to \tau \bar{\tau}$	0.9

- We expect continuum and BB backgrounds should be zero by using event topology, and continuum suppression criteria.
- Based on other B-factory τ analyses, we expect non-ττ background to be negligible after applying standard cuts on the number of tracks, no extra photons, and event topology.
- Based on other displaced-vertex analyses (e.g. arXiv: 1301.1105), we expect the background to be further suppressed
- Final background suppression and extraction of signal yield can be done in terms of the M_N , the measurement of which is discussed in next slide.

$M_{\rm N}$ reconstruction

- 12 unknowns: p^{μ}_{ν}, p^{μ}_{N}, and p^{μ}_{τ}
- 12 constraints:
 - \boldsymbol{p}_4 conservation in the τ and N decays (8 constraints),
 - mass of τ and $\nu_{_{\tau}}$ (2 constraints)
 - unit vector from the production point of the X_1 system to that of the X_2 system, which is the direction of the p_3 of N.
 - The last constraint is large flight distance of the N
- Quadratic relation between E_N and P_N leads two solutions for M_N : m_1 and m_2 .
- For signal, either $m_1 \approx m_N$ or $m_2 \approx m_N$ (detector resolution should be added)
- Background events are spread out uniformly throughout the (m_1, m_2) plane.
- With final data: Determine signal yield from fit (m1,m2) to sum of signal + background distribution.

Expected Limit on $|U_{N\tau}|$ from B-factories

- Result obtained assuming that the background can be reduced to 0. We are working on estimating the background, but we expect it to be low based on the strong background-rejection capabilities of the displaced vertex and m₁-m₂ selection.
- N decay occurs inside Belle II tracking volume of r = 1.2 m

Future Improvement:

Decays occurring inside the muon system, covering r = 2.5 m, can increase the sensitivity to lower values of $|U_{NT}|^2$. This requires dedicated muon-system tracking

Conclusion

- We propose a new search for a sterile neutrino N that mixes predominantly with the v_{T} and that has mass $m_{N} < m_{T}$.
- The current best limits, obtained by DELPHI experiment, can be improved upon by current and future B-factories.
- Belle II can have best sensitivity to LLP search in τ decays by making use of our large samples of $e^+ e^- \to \tau^+ \tau^-$ events
- Our method exploits the long lifetime of N to greatly suppress background. In addition, kinematic and vertex-based constraints are used to further suppress backgrounds.
- Belle II simulation results are under review by collaboration. Soon be available for public
- The study was performed in collaboration with Claudio Dib, Juan Carlos Helo, Nicolás Neill, Jilberto Zamora Saá.

THANK YOU!