

Rare Decays and Lepton Flavor Universality Ratios

Saurabh Sandilya University of Cincinnati (Jul 29, 2019)

The APS Division of Particles & Fields (DPF) Meeting 2019

Scope of this talk

 b → s (or, b → d) quark level transitions are FCNCs and are forbidden in the SM at the tree level and can only occur at greatly suppressed rates through higher-order processes (penguin loops/box).

Introduction

• The decays such as $B \to K^{(*)} \ell^+ \ell^-$ are manifestations of quark level transitions

a virtual t quark contribution dominates, with secondary contributions from virtual c and u quarks.

• **Sensitive to NP:** Interference from the 'possible' contribution from the BSM.

These decays are rich laboratories of NP studies on its own and offer hope of new physics.

Introduction

• The decays such as $B \to K^{(*)} \ell^+ \ell^-$ are manifestations of quark level transitions

a virtual t quark contribution dominates, with secondary contributions from virtual c and u quarks.

The relevant effective Hamiltonian:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}\sum_i (C_iO_i + C'_iO'_i) + h.c.$$

The Operators which are most sensitive to the NP:

 W^{-}

First observation of a b \rightarrow s $\ell^+\ell^-$ decay (LP-2001)

Forward Backward asymmetry in $B \rightarrow K^* \ell^+ \ell^-$

B → K^(*) $\ell^+ \ell^-$ based on 657 M BB pairs $\downarrow \mu^+\mu^-$ and $e^+e^ \downarrow K^+\pi^-$, $K_S^0\pi^+$, $K^+\pi^0$, K^+ and K_S^0

 F_{L} and A_{FB} are obtained from fit to $cos\theta_{\mathsf{K}^*}$ and $cos\theta_{\mathsf{B}\ell}$

$$\frac{1}{2}F_L\cos^2\theta_{K^*} + \frac{3}{4}(1 - F_L)(1 - \cos^2\theta_{K^*})]\epsilon(\cos\theta_{K^*})$$
$$\frac{1}{4}F_L(1 - \cos^2\theta_{B\ell}) + \frac{3}{8}(1 - F_L)(1 + \cos^2\theta_{B\ell})$$

 $+ A_{\rm FB} \cos\theta_{B\ell}] \epsilon (\cos\theta_{B\ell})$

For full q² range:

 $R(K^*) = 0.83 \pm 0.17 \pm 0.08$ $R(K) = 1.03 \pm 0.19 \pm 0.06$

Till last year

Early B factories

Belle PRL103, 171801 (2009)

Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$

- A number of angular observables in $B \to K^* \ell^+ \ell^-$ decays can be theoretically predicted with good control of the relevant form factor uncertainties.
- The observables P_i are considered to be largely free from form-factor related uncertainties (Introduced by LHCb in PRL 111, 191801 (2013))

- Measurements are mostly compatible with the SM.
- LHCb observed deviation wrt SM predictions in P_5' with 3.7 σ .
- Belle observed similar central values for the P_5' anomaly $q^2 \in (1.1,6.0) \text{ GeV}^2/c^4$ with 2.5 σ tension. SM: S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto JHEP10, 075 (2016).

R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate PoS LATTICE2014, 372 (2015). LHCb: JHEP02, 104 (2016) | Belle : Phys. Rev. Lett. 118, 111801 (2017) CMS : Phys. Lett. B 781 517 (2018) | ATLAS : JHEP 10 (2018) 047

P'_i and Q'_i in separate lepton flavors

Belle [Phys. Rev. Lett. 118, 111801 (2017)]

The Largest deviation in the muon mode with 2.6σ. Electron mode is deviating

with **1.1o**.

- Belle (II) is equally efficient in e & μ modes.
- With 2.8 ab⁻¹ the uncertainty on P'₅ (e & μ) at Belle II will be comparable to LHCb 3fb⁻¹ (μ only). B2TIP report | arXiv:1808.10567

- Test lepton flavor universality.
- Observables **Q**_i = **P'**_i^µ **P'**_i^e. [JHEP 10, 075 (2016)]
- Deviation from zero very sensitive to NP.

- No significant deviation from zero is seen.
- Q₄ and Q₅ observables in agreement with SM and central values favoring NP scenario.

Lepton Flavor Universality Ratios

- $R_{\rm H}[q_0^2, q_1^2] = \frac{\int_{q_0^2}^{q_1^2} dq^2 \frac{d\Gamma(E^{-1})}{dq^2}}{\int_{q_0^2}^{q_1^2} dq^2 \frac{d\Gamma(B \to He^+e^-)}{dq^2}};$ The lepton flavor universality can be tested very precisely with the ratios:
- In these ratios, hadronic uncertainties in theoretical predictions cancel and SM prediction is (very) close to unity.
- Experimentally, many sources of systematic uncertainties are also substantially reduced. Status till last year 2018

Recent R(K*) measurement at Belle

- Reconstructed B⁰ and B⁺: $\mathbf{B} \rightarrow \mathbf{K}^*(\mathbf{892})\ell^+\ell^-$

Full Belle data set **711 fb**⁻¹ $\downarrow \mu^+\mu^-$ and $e^+e^ K^+\pi^-$, $K^0_S\pi^+$, and $K^+\pi^0$

- Bremsstrahlung losses are recovered in electron candidates.
- **Hierarchical NN Reconstruction :** A dedicated NN classier is trained with MC samples to identify each particle type used in the decay chain.
- To further suppress ($e^+e^- \rightarrow q\bar{q}$) background events, variables related to event shape variables, vertex information are used in the NN.
- Large irreducible background events arise from the decay $B \rightarrow K^*J/\psi[\psi(2S)]$, which are vetoed by applying criteria on di-lepton invariant mass.
- However, the decays $B \rightarrow K^*J/\psi[\psi(2S)]$ serve as a very good Control Sample.

$$\frac{BF[B \to K^* J/\psi(\to \mu^+ \mu^-)]}{BF[B \to K^* J/\psi(\to e^+ e^-)]} = 1.015 \pm 0.025 \pm 0.038$$

Belle [arXiv: 1904.02440]

Recent R(K*) measurement at Belle

- Signal is extracted in Beam Constrained Mass: $M_{bc} = \sqrt{E_{beam}^2 |\vec{p}_B|^2}$
- Signal pdf: Crystal Ball, Combinatorial background pdf: Argus shape.
- For example, the fit presented below are for the q² > 0.045 GeV²/c⁴

Analysis is performed in several q² bins [0.045, 1.1], [1.1, 6.0], [0.1, 8.0], [15, 19], and > 0.045 GeV²/c⁴

Current R(K*) Status

- Belle also provided first measurement of R(K*+).
- Latest R(K*) measurement from Belle are consistent with the SM as well as with the previous measurements from LHCb (and BaBar).

Belle [arXiv: 1904.02440]

- Reconstructed B⁺ : $B^+ \rightarrow K^+ \ell^+ \ell^-$ using 5 fb⁻¹ of pp collision at CM energy 7, 8 and $\downarrow \mu^+\mu^-$ and e^+e^- 12 TeV
- Significantly different reconstruction of decays with muons in the final state as compared to decays with electrons (brem losses and different trigger selection).
- Measure R_K as a double ratio:

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to \mu^{+} \mu^{-}) K^{+})} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to e^{+} e^{-}) K^{+})}$$

- Several cross-checks are used to verify the analysis procedure.
 - Single ratio $r(J/\psi)$ [=1.014 ± 0.035] is found to be consistent with unity (also as a function momentum of leptons and dilepton opening angle.)
 - Double ratio $\mathbf{R}_{\mathbf{K}}^{\Psi(2S)}$ [=0.986 ± 0.013] is determined close to 1.

Recent R(K) measurement at LHCb

- Reconstructed B⁺ : $B^+ \rightarrow K^+ \ell^+ \ell^-$ using 5 fb⁻¹ of pp collision at CM energy 7, 8 and $\downarrow \rightarrow \mu^+\mu^-$ and e^+e^- 12 TeV
- Significantly different reconstruction of decays with muons in the final state as compared to decays with electrons (brem losses and different trigger selection).

- A total of $1943 \pm 49 \text{ B}^+ \rightarrow \text{K}^+\mu^+\mu^-$ decays are observed.
- The value of R_{K} [q² \in (1.1, 6.0) GeV²/c⁴] = 0.846^{+0.060}_{-0.054} (stat.)^{+0.016}_{-0.014} (sys.)

Recent R(K) measurement at Belle

- Reconstructed B^0 and B^+ : $B \rightarrow K \ell^+ \ell^-$

Full Belle data set **711 fb**⁻¹ $\longrightarrow \mu^+\mu^-$ and $e^+e^ K^+$ and K^0_S

- Charged tracks are required to originate near the interaction region (except K_{S}^{0}) and further selected based on particle identification.
- Bremsstrahlung losses are recovered in electron candidates.
- A NN is trained with input variables related event shape, vertex quality and decay kinematics to suppress the **background from continuum and generic** *B* **decays**.
- Large irreducible background events arise from the decay $B \rightarrow KJ/\psi[\psi(2S)]$, which are vetoed by applying criteria on di-lepton invariant mass.
- Also a veto $[M_{\kappa\pi} \notin (1.85, 1.88) \text{ GeV/c}^2]$ is applied to suppress events arising from the decay $B^- \rightarrow D^0[K^- \pi^+] \pi^-$ due to particle mis-identification.
- The decays $\mathbf{B} \rightarrow \mathbf{KJ}/\psi[\psi(\mathbf{2S})]$ served as a good control sample.

 $\frac{\mathrm{BF}[B^+ \to \mathrm{K}^+\mathrm{J}/\psi(\to \mu^+\mu^-)]}{\mathrm{BF}[B^+ \to \mathrm{K}^+\mathrm{J}/\psi(\to e^+e^-)]} = 0.992 \pm 0.011 \quad \frac{\mathrm{BF}[B^0 \to K^0_S\mathrm{J}/\psi(\to \mu^+\mu^-)]}{\mathrm{BF}[B^0 \to K^0_S\mathrm{J}/\psi(\to e^+e^-)]} = 1.048 \pm 0.020$

Recent R(K) measurement at Belle

- The NN output (O) is translated to (O') using the formula:
- Requirement O_{min} > -0.6 reduces 75% bkg with 4-5% signal loss.
- Extended maximum likelihood fit is performed in 3-dimensions: M_{bc} , $\Delta E (E_B E_{beam})$, and O'. (parameterized with MC, control samples and off-resonance data).
- For example, the fit presented below are for the q² > 0.1 GeV²/c⁴

The value of R_{K} [q² \in (1.0, 6.0) GeV²/c⁴] = 0.98^{+0.27}_{-0.23} (stat.) \pm 0.06 (sys.)

 $\mathbf{0}' = \log \frac{\mathbf{0} - \mathbf{0}_{\min}}{\mathbf{0}_{\max} - \mathbf{0}}$

Current R(K) Status

- Belle measured R(K) in several q² bins and also reported first measurement of R(K_s⁰).
- In all the bins Belle's R(K) is **consistent with SM** value.

• In fact, Belle $R(K^+) = 1.31^{+0.34}_{-0.31} \pm 0.07$ [in q² \in (1.0, 6.0) GeV²/c⁴]

0.2

5

10

15

20 2 q² (GeV²/c⁴) • Another theoretically clean observable is CP averaged isospin asymmetry:

$$A_{I} = \frac{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) - \mathcal{B}(B^{+} \to K^{+}\ell\ell)}{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) + \mathcal{B}(B^{+} \to K^{+}\ell\ell)}$$
 The value of A(I) is expected to be close to zero in the SM.

```
J. Lyon and R. Zwicky,
Phys. Rev. D 88, 094004 (2013)
```

• Earlier, BaBar [PRD 86, 032012 (2012)], Belle [PRL103, 171801 (2009)] and LHCb [JHEP 06 (2014)133] had reported A(I) to be significantly below zero, especially in the q² region below the J/ ψ resonance.

- Belle's A(I) measurement is consistent with the previous measurements.
- In all bins A(I) is below zero.

• Another theoretically clean observable is CP averaged isospin asymmetry:

$$A_{I} = \frac{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) - \mathcal{B}(B^{+} \to K^{+}\ell\ell)}{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) + \mathcal{B}(B^{+} \to K^{+}\ell\ell)}$$
 The value of A(I) is expected to be close to zero in the SM.

J. Lyon and R. Zwicky, Phys. Rev. D 88, 094004 (2013)

• Earlier, BaBar [PRD 86, 032012 (2012)], Belle [PRL103, 171801 (2009)] and LHCb [JHEP 06 (2014)133] had reported A(I) to be significantly below zero, especially in the q² region below the J/ ψ resonance.

Belle II Projections for R(K) and R(K*)

- Upcoming Belle II measurements will be helpful in reducing statistical uncertainties.
- Total uncertainties on R(K) and R(K*) measurements can reach down to below 5% with full data-set at Belle II.
- Uncertainties are still statistical dominant (total systematic is below 1% with dominating uncertainty from lepton identification ~ 0.4%)

B2TIP report | arXiv:1808.10567

Summary

- The decays $B \rightarrow K^{(*)}\ell^+\ell^-$ are FCNC processes and is a laboratory of New Physics studies on its own.
- The ratio of branching fractions R(K) and R(K*) are theoretically as well as experimentally clean variables.
- Most precise results come from LHCb collaboration and reported (this year: PRL122 (2019) 191801) a deviation of 2.6σ in q² ∈ (1.1,6.0) GeV²/c⁴ for R(K) and similar deviations were reported earlier in R(K*) JHEP08(2017)055.
- Belle measurements of R(K*) (arXiv:1904.02440) and R(K) are compatible with both SM as well as with past measurements.
- Belle A(I) measurement for $B \to K\ell^+\ell^-$ is found significantly below zero (specially in $q^2 \in (1.0, 6.0)$ GeV²/c⁴ for decay $B \to K\mu^+\mu^-$ with deviation ~2.7 σ).
- Belle II experiment has started physics runs and expected to accumulate larger data sample, which will be crucial for rare decays measurements.

Extra Slides

LHCb prospects

Interplay between the LHCb Upgrades and Belle II.

$\mathbf{Experiment}$	2018	2021	2024	2025	2037
Belle-II		$5 \mathrm{ab}^{-1}$		$50 {\rm ab}^{-1}$	
LHCb	9 fb ⁻¹		$23 {\rm fb}^{-1}$		$300 {\rm fb}^{-1}$

Large reduction of the uncertainty on the LFU measurements.

Yield		Run 1 result	$9\mathrm{fb}^{-1}$	$23\mathrm{fb}^{-1}$	$50 {\rm fb}^{-1}$	$300{\rm fb}^{-1}$
$B^+ \rightarrow K^+ e^+ e^-$	-	254 ± 29 [274]	1120	3 300	7500	46 000
$B^0 \rightarrow K^{*0} e^+ e^-$		111 ± 14 [275]	490	1 400	3 300	20000
$B_s^0 ightarrow \phi e^+ e^-$			80	230	530	3 300
$\Lambda^0_b ightarrow pKe^+e^-$		-	120	360	820	5000
$B^+ \rightarrow \pi^+ e^+ e^-$		-	20	70	150	900
R_X precision	(stat.only)	Run 1 result	$9{\rm fb}^{-1}$	$23\mathrm{fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$
R_K	0.745 ± 0.0	[170] 200 0 1 000				
	0.140 ± 0.0	190 ± 0.036 [274]	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	0.745 ± 0.0 0.69 ± 0.0	$\begin{array}{c} 0.036 & 274 \\ 0.11 \pm 0.05 & 275 \end{array}$	$0.043 \\ 0.052$	$0.025 \\ 0.031$	0.017 0.020	$0.007 \\ 0.008$
$R_{K^{st 0}} R_{\phi}$	0.745 ± 0.00 0.69 ± 0.00	$\begin{array}{c} 0.036 & 274 \\ 0.11 \pm 0.05 & 275 \\ \end{array}$	$0.043 \\ 0.052 \\ 0.130$	$0.025 \\ 0.031 \\ 0.076$	$0.017 \\ 0.020 \\ 0.050$	0.007 0.008 0.020
$egin{array}{c} R_{K^{st 0}} \ R_{\phi} \ R_{pK} \end{array}$	0.745 ± 0.00 0.69 ± 0.00	$0.036 \pm 0.036 \ 274 \ 0.11 \pm 0.05 \ 275 \ -$	0.043 0.052 0.130 0.105	$\begin{array}{c} 0.025 \\ 0.031 \\ 0.076 \\ 0.061 \end{array}$	$\begin{array}{c} 0.017 \\ 0.020 \\ 0.050 \\ 0.041 \end{array}$	0.007 0.008 0.020 0.016

From slides of Julián García Pardiñas (Win 2019) & Vitalii Lisovskyi (EPSHEP 2019)

LHCb prospects

arXiv:1903.0961 [Alok, Amol, Shireen, Dinesh]

- analyze all the scenarios where the NP contributes to a pair of $(O_9, O_{10}, O_9', O_{10}')$ operators at a time.
- Scenarios with new physics contributions to the (C_9^{NP}, C_9') or (C_9^{NP}, C_{10}') pair remain the most favored ones.

Forward Backward asymmetry in $B \rightarrow K^* \ell^+ \ell^-$

 F_L and A_{FB} are obtained from fit to $cos\theta_{K^*}$ and $cos\theta_{B\ell}$

Till this year

Pre-LHCb

Belle II prospects for $B \rightarrow X_s \ell^+ \ell^-$

Belle II can
 significantly improve
 upon this situation
 and with its expected
 larger statistics.

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$Br(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV^2})$	23%	10%	4.7%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] {\rm GeV}^2)$	26%	9.7%	3.1%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] {\rm GeV}^2)$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	19%	7.3%	2.4%

B2TIP report | arXiv:1808.10567

In the beginning, Belle II will still have to rely on the sum-of-exclusive method but later fully inclusive analysis can also be attempted.

- Inclusive measurement is theoretically cleaner than the exclusive, but experimentally more challenging.
- Sum-of-exclusive technique (10 modes with M[X_s] < 2.0 GeV/c²) used to measured A_{FB} (corresponds to ~50% of the inclusive rate).

Full Angular Analysis

29-Jul-2019

The observables are depended on $q^2 = M_{\ell^+\ell^-}^2$

,

The differential decay rate for $B \to K^* \ell^+ \ell^-$ can be written as

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K \right] \\ + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_L \\ - F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_L \cos\phi + S_5 \sin 2\theta_K \sin\theta_L \cos\phi \\ + S_6 \sin^2\theta_K \cos\theta_L + S_7 \sin 2\theta_K \sin\theta_L \sin\phi \\ + S_8 \sin 2\theta_K \sin 2\theta_L \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right]$$

Inset 3: The $A_{\rm FB}$, $F_{\rm L}$ and P_5' asymmetries

1606.00999

Figure 11: The angles θ_{ℓ} , θ_K and ϕ in the decay $B \rightarrow K^* \mu^+ \mu^-$. Figure by Thomas Blake.

Figure 12: Definition of the P'_5 asymmetry.

In the decay $B^0 \to K^{*0} \mu^+ \mu^-$, followed by $K^{*0} \to$ $K^+\pi^-$, the direction of the four outgoing particles can be described by three angles, shown in Fig. 11. The forward-backward asymmetry $A_{\rm FB}$ is defined as the relative difference between the number of positive and negative leptons going along the direction of the B^0 meson in the rest frame of the two-lepton system. This corresponds to an asymmetry in the distribution of the θ_{ℓ} angle. Similarly, the K^{*0} polarisation fraction F_{1} depends on the angle θ_K , defined analogously to θ_ℓ . Other asymmetries can be constructed from the other angles or combinations of them. The P'_5 asymmetry suggested by Ref. [101] is based on the angles θ_K and ϕ . It is defined as the relative difference between the number of decays in the regions in red and blue in Fig. 12, divided by $\sqrt{F_L(1-F_L)}$. Quantities based on several angles are more difficult to measure than single-angle ones as they require a better understanding of the reconstruction efficiencies depending on the kinematics of the outgoing particles.

Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

The differential decay rate for $B \to K^* \ell^+ \ell^-$ can be written as

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K \\ + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_L \\ -F_L\cos^2\theta_K\cos2\theta_L + S_3\sin^2\theta_K\sin^2\theta_L\cos2\phi \\ + S_4\sin2\theta_K\sin2\theta_L\cos\phi + S_5\sin2\theta_K\sin\theta_L\cos\phi \\ + S_6\sin^2\theta_K\cos\theta_L + S_7\sin2\theta_K\sin\theta_L\sin\phi \\ + S_8\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin^2\theta_K\sin^2\theta_L\sin2\phi \end{bmatrix}$$

$$JHEP \ 01 \ (2009) \ 019$$

$$P'_4, S_4 : \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \theta_L & \text{for } \theta_L > \pi/2, \\ \theta_L \to \pi - \theta_L & \text{for } \theta_L > \pi/2, \end{cases}$$
The observables are considered to be largely free from form-factor related uncertainties

29-Jul-2019

Folding Procedure

$$P'_{4}, S_{4}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_{L} > \pi/2\\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \pi/2, \end{cases}$$

$$P'_{5}, S_{5}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \pi/2, \end{cases}$$

- With a transformation of the angles, the dimension is reduced to three free parameters
- Each transformation remains three observables S_j, F_L and S₃
- The observables

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}},$$

are considered to be largely free from form-factor uncertainties (J. High Energy Phys. 05 (2013) 137).

Transverse polarization asymmetry

$$A_T^{(2)} = rac{2S_3}{(1-F_L)}$$

Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

• Data is divided in the q² bins.

Belle [Phys. Rev. Lett. 118, 111801 (2017)]

- Signal and background fraction is obtained by fitting M_{bc} distribution
- The data is split into a sideband and signal region

 Shape of the background can be determined in the sideband region

• Final fit in signal region for each transformation