Start of the Belle II Experiment at SuperKEKB

for the Belle II Collaboration

Oskar Hartbrich

University of Hawaii at Manoa

EPS-HEP 2019, Ghent 07/11/2019

The Belle II Collaboration

• Truly international: now ~980 researchers from 26 countries

B-Factory Experiments

- Asymmetric beam energies, high luminosity \rightarrow High statistics of boosted B, D and τ
- Flavour physics
 - CKM matrix, unitarity triangle
 - CPV in B system
- BSM limits
 - Rare B/D decays
 - $\quad b \to s \gamma, \ b \to s l^+ l^-$
 - LFV in τ decays
- New particles
 - Tetraquarks

SuperKEKB

- 40x higher instantaneous luminosity ullet
- Nano-Beam scheme •

 σ_{-} 6-7 mm

- Almost completely new machine
- New final focus system

Challenges on the Detector Upgrade

- Significantly increased beam backgrounds (x10-20 x?)
 - Faster frontend electronics to reduce background pileup
- Increased trigger rates, data transfer bandwidth (x10-100)
 - Overhauled DAQ system, pipelined readout
 - Full event reconstruction and data reduction in high level trigger farm (~3000 nodes)
- Reduced initial state boost (-30%)
 - Higher resolution vertexing detectors
 - Addition of pixel detector

Belle II Detector Upgrade

Belle II Detector Upgrade

Key Technologies in Detector Upgrade

- State-of-the-art silicon detectors
- Pixelated single photon sensors
 - MCP-PMTs in TOP (barrel PID) time resolution
 - HAPDs in ARICH (end cap PID) large area
 - SiPMs in KLM low cost
- Waveform sampling readouts
 - TOP: 8192 channels, 2.7GSa/s: IRSX (Hawaii)
 - Sci-KLM: 16800 channels, 1GSa/s: TARGETX (Hawaii)
 - SVD: 224k channels, 32MSa/s: APV25 (adapted from CMS)
 - CDC: 14336 channels, 30Msa/s
 - ECL: 8736 channels, 2MSa/s

Belle II Vertex Detector

- Two layers of DEPFET pixel sensors
 - r=14mm, r=22mm
 - Only inner layer and small part of outer layer installed, replacement with full system in 2021
- Four layers of double sided strip detectors
 - r=39mm to r=140mm
- Assembled and installed by November 2018 $\,\rightarrow$

First Collision in Physics Run- 03/25/2019

10

... and the Reaction

Luminosity in 2019

• 6.5fb⁻¹ integrated from March 25th to July 1st 2019 (410pb⁻¹ for EPS-HEP)

Int. $lumi = 50 ab^{-1}$

12

- L_{peak}: 6.1x10³³ cm⁻² s⁻¹ (12x10³³ with Belle II off)
- Limited by backgrounds, beam-beam blowup
- New machine, entirely new concept, requires tuning

– Already running at world record β_y^* =2mm

Impact Parameter Resolution

Small luminous region used as a reference for vertexing resolution studies

BB Pairs in First Data

- Decompose measured R2 distribution into BB and continuum components
- Using off-resonance data to model continuum distribution
 - some discrepancies in continuum MC likely due to incomplete machine background modeling
- Many $B\overline{B}$ pairs in first data set
 - We are stably operating on on the Y(4s) resonance

Reconstructed B decays

- $B \rightarrow D(*)h$ exclusive (h= π, ρ)
 - Various D decays
- ~300 selected event candidates in first 410pb⁻¹

15

Summary

- The Belle II detector is assembled and ready for operation
 - Extensive detector upgrade with cutting edge silicon detectors and readout electronics upgrades
- We started our first physics running period in March 2019
 - The SuperKEKB nano beam scheme works and is already running at world record $\beta_v^*=2mm$
 - Delivered and recorded luminosities are ramping up, but still below Belle levels
- Clear signs of first physics out of the detector

Other Belle II Talks at EPS-HEP

- First Physics:
 - I. Ripp-Baudot: "*First look at CKM parameters from early Belle II data*" Flavour Physics and CP Violation: Thursday 09:00
 - K. Lautenbach: "Exotic and Conventional Quarkonium Physics Prospects at Belle II" QCD and Hadronic Physics: Thursday 14:45
 - S. Cunliffe: "Dark Sector Physics with Belle II" Dark Matter: Thursday 15:10
 - W. Sutcliffe: "Missing energy and electroweak penguin modes in early Belle II data" Flavour Physics and CP Violation: Friday 09:45
 - F. Forti: "BELLE II and flavor physics in e+e-" Plenary: Tuesday 10:00
- Detectors:
 - H. Ye: "Commissioning of the Belle II Pixel Vertex Detector" Detector R&D and Data Handling: Thursday 10:15
 - OH: "First Experiences with the Novel Time of Propagation (TOP) Barrel PID Detector in the Belle II Experiment" Detector R&D and Data Handling: Thursday 11:30
 - S. Longo: "A Novel Approach to Calorimeter-based Particle Identification at the Belle II Experiment using Scintillator Pulse Shape Discrimination"
 Detector R&D and Data Handling: Friday 09:30
 - A. Paladino: "Performance of the Belle II Silicon Vertex Detector" Poster: Monday 18:30
 - L. Santelj: "The Aerogel RICH detector of the Belle II experiment " Poster: Monday 18:30

SuperKEKB Beam Spot

- Measurement for all three dimensions
- Nanobeam scheme works as intended

	Data
$\hat{\sigma}_x$ [μ m]	$14.6 \pm 0.4 ({ m stat}) \pm 0.2 ({ m syst})$
$\hat{\sigma}_{z}$ [µm]	$346.9 \pm 1.8 (\mathrm{stat}) \pm 0.1 (\mathrm{syst})$

PXD: Inner Vertexing with DEPFET Pixels

- DEPFET: internal charge to current amplification P source
 - Very good S/N for thin sensors
 - Relatively low power (no cooling in active area)
 - Rolling shutter readout (20us frame time)
- Sensors thinned to 75um
 - <0.25% X_∩ per layer
- Two layers (r=14mm, 22mm)
 - Down to 50*55um pixels
 - 40 sensors total, 7.7Mpixel

amplifier

PXD: Current Installation

- After technical troubles in module production and assembly: only inner layer installed
 - +2 ladders on outer layer
 - 10/20 sensors (3.8Mpixel)
- Restarted production of all sensor types to provide modules for a complete replacement of the currently installed PXD by 2021

PXD: Readout

- PXD is virtually noise free, but rather long integration time (20us, two full accelerator revolutions)
- ONSEN system reads out full PXD on each trigger and keeps data in local buffer
 - HLT reconstruction identifies regions of interest on PXD surface, ONSEN only transfers relevant parts of PXD hitmaps to EB2/storage
 - DATCON: FPGA based tracking to generate RoIs directly from SVD raw data
- Still PXD accounts for ~75% of total Belle II raw data size

SVD: Silicon Vertex Detector

- Four layers of double-sided strip detectors
 - r=39mm to r=140mm
 - Lampshade geometry
- 224k strips
 - 50-75um pitch tangential
 - 160-240um pitch axial
- Read out by APV25 ASICs
 - Adapted from CMS
 - 50ns shaping,40MHz sampling
 - Partially thinned to 100um

SVD: Production

- Readout chips of central sensors bonded to "Origami" Kapton flex
 - Folded around sensors
- Ladders assembled all around the world:
 - Layer 3: Uni Melbourne, Australia
 - Layer 4: TIFR, India
 - Layer 5: HEPHY, Austria
 - Layer 6: Kavli-IPMU, Japan
- Final assembly into half shells and full vertexing system at KEK

Hawaii Waveform Sampling ASICs

- Hawaii Instrumentation Development Lab spinoff: Nalu Scientific
 - Founded by Isar Mostafanezhad (ex-postdoc of IDLab)
- Commercialisation of switched capacitor waveform sampling ASICs based on IDLab designs
- Three ASICs available:
 - SiRead: 32 channels, ~1 GSa/s
 - ASoC: 8 Channels, ~3 GSa/s
 - Aardvarc: 4 Channels, ~14 Gsa/s

Nalu Scientific

Data Acquisition Systems isar@naluscientific.com

Understanding Belle II

X-Y view

Understanding Belle II

X-Z view

