Start of the Belle II Experiment at SuperKEKB

Oskar Hartbrich
University of Hawaii at Manoa
for the Belle II Collaboration

EPS-HEP 2019, Ghent
07/11/2019
The Belle II Collaboration

- Truly international: now ~980 researchers from 26 countries
B-Factory Experiments

- Asymmetric beam energies, high luminosity
 → High statistics of boosted B, D and τ

- Flavour physics
 - CKM matrix, unitarity triangle
 - CPV in B system

- BSM limits
 - Rare B/D decays
 - $b \to s\gamma$, $b \to s l^+ l^-$
 - LFV in τ decays

- New particles
 - Tetraquarks
SuperKEKB

- 40x higher instantaneous luminosity
- Nano-Beam scheme
 - Almost completely new machine
 - New final focus system

<table>
<thead>
<tr>
<th>KEKB</th>
<th>SuperKEKB</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER</td>
<td>HER</td>
<td></td>
</tr>
<tr>
<td>Beam energy E_b</td>
<td>3.5</td>
<td>8</td>
</tr>
<tr>
<td>Beam crossing angle ϕ</td>
<td>22</td>
<td>83</td>
</tr>
<tr>
<td>β function @ IP β_x^-/β_y^-</td>
<td>1200/5.9</td>
<td>32/0.27</td>
</tr>
<tr>
<td>Beam current I</td>
<td>1.64</td>
<td>1.19</td>
</tr>
<tr>
<td>Luminosity L</td>
<td>2.1×10^{34}</td>
<td>8×10^{35}</td>
</tr>
</tbody>
</table>

σ_z 6-7 mm
overlap region = bunch length

σ_z^{+} 100-150 μm

σ_x^{+} 10-12 μm

$d = \frac{\sigma_z^{+}}{\phi}$

KEKB head-on (crab crossing)

Nano-Beam SuperKEKB

KEKB

- Electron-Positron linear accelerator
- Electron ring
- Positron ring
- Collision point
- Belle II detector

Electron-Positron linear accelerator

Positron damping ring
Challenges on the Detector Upgrade

- Significantly increased beam backgrounds ($\times 10^{-20}$)
 - Faster frontend electronics to reduce background pileup
- Increased trigger rates, data transfer bandwidth ($\times 10^{-100}$)
 - Overhauled DAQ system, pipelined readout
 - Full event reconstruction and data reduction in high level trigger farm (~3000 nodes)
- Reduced initial state boost (-30%)
 - Higher resolution vertexing detectors
 - Addition of pixel detector
Belle II Detector Upgrade

- K_L/Muon System
- Magnet Coil
- EM Calorimeter
- π/K Identification
- Drift Chamber
- Silicon Tracking
Belle II Detector Upgrade

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
</table>
| K⁻/Muon System | New readout electronics
| | Many RPC layers replaced with scintillator strips + SiPMs |
| Magnet Coil | No change |
| EM Calorimeter | New readout electronics
| | (Crystals, sensors not changed) |
| π/K Identification | Fully replaced |
| Drift Chamber | Fully replaced |
| Silicon Tracking | Fully replaced |
| | Larger outer radius for increased lever arm |
| | 4 layers of double sided silicon strips + 2 layers of DEPFET pixels |
Key Technologies in Detector Upgrade

- State-of-the-art silicon detectors
- Pixelated single photon sensors
 - MCP-PMTs in TOP (barrel PID) – time resolution
 - HAPDs in ARICH (end cap PID) – large area
 - SiPMs in KLM – low cost
- Waveform sampling readouts
 - TOP: 8192 channels, 2.7GSa/s: IRSX (Hawaii)
 - Sci-KLM: 16800 channels, 1GSa/s: TARGETX (Hawaii)
 - SVD: 224k channels, 32MSa/s: APV25 (adapted from CMS)
 - CDC: 14336 channels, 30Msa/s
 - ECL: 8736 channels, 2MSa/s
Belle II Vertex Detector

- Two layers of DEPFET pixel sensors
 - $r=14\text{mm}$, $r=22\text{mm}$
 - Only inner layer and small part of outer layer installed, replacement with full system in 2021
- Four layers of double sided strip detectors
 - $r=39\text{mm}$ to $r=140\text{mm}$
- Assembled and installed by November 2018 →
First Collision in Physics Run- 03/25/2019

Probably $e^+e^- \rightarrow Y(4s) \rightarrow B\bar{B}$
... and the Reaction
Luminosity in 2019

- 6.5fb\(^{-1}\) integrated from March 25\(^{th}\) to July 1\(^{st}\) 2019 (410pb\(^{-1}\) for EPS-HEP)
 - \(L_{\text{peak}}\): 6.1x10\(^{33}\) cm\(^{-2}\) s\(^{-1}\) (12x10\(^{33}\) with Belle II off)
 - Limited by backgrounds, beam-beam blowup
- New machine, entirely new concept, requires tuning
 - Already running at world record \(\beta^*_{y}=2\text{mm}\)
Impact Parameter Resolution

- Small luminous region used as a reference for vertexing resolution studies

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\sigma}(d_0)$ [μm]</td>
<td>14.2 ± 0.1 (stat) ± 0.1 (syst)</td>
</tr>
<tr>
<td>$\hat{\sigma}(z_0)$ [μm]</td>
<td>16.1 ± 0.1 (stat) ± 0.1 (syst)</td>
</tr>
</tbody>
</table>
BB Pairs in First Data

- Decompose measured R^2 distribution into BB and continuum components
- Using off-resonance data to model continuum distribution
 - some discrepancies in continuum MC likely due to incomplete machine background modeling
- Many BB pairs in first data set
 - We are stably operating on on the $Y(4S)$ resonance
Reconstructed B decays

- $B \to D(\ast)h$ exclusive ($h=\pi,\rho$)
 - Various D decays
- ~ 300 selected event candidates in first 410pb$^{-1}$

<table>
<thead>
<tr>
<th>Mode</th>
<th>Exp7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \to D\pi$</td>
<td>140 ± 13</td>
</tr>
<tr>
<td>$B \to D\rho$</td>
<td>58 ± 11</td>
</tr>
<tr>
<td>$B \to D^{*0}\pi$</td>
<td>24 ± 5</td>
</tr>
<tr>
<td>$B^0 \to D^{*\pm}\pi$</td>
<td>32 ± 6</td>
</tr>
<tr>
<td>$B^0 \to D^-\pi^+$</td>
<td>31 ± 7</td>
</tr>
<tr>
<td>$B^0 \to D^-\rho^+$</td>
<td>14 ± 7</td>
</tr>
</tbody>
</table>
Summary

• The Belle II detector is assembled and ready for operation
 – Extensive detector upgrade with cutting edge silicon detectors and readout electronics upgrades

• We started our first physics running period in March 2019
 – The SuperKEKB nano beam scheme works and is already running at world record $\beta^*_y=2\text{mm}$
 – Delivered and recorded luminosities are ramping up, but still below Belle levels

• Clear signs of first physics out of the detector
Other Belle II Talks at EPS-HEP

- **First Physics:**
 - I. Ripp-Baudot: “First look at CKM parameters from early Belle II data”
 Flavour Physics and CP Violation: Thursday 09:00
 - K. Lautenbach: “Exotic and Conventional Quarkonium Physics Prospects at Belle II”
 QCD and Hadronic Physics: Thursday 14:45
 - S. Cunliffe: “Dark Sector Physics with Belle II“
 Dark Matter: Thursday 15:10
 - W. Sutcliffe: “Missing energy and electroweak penguin modes in early Belle II data”
 Flavour Physics and CP Violation: Friday 09:45
 - F. Forti: “BELLE II and flavor physics in e+e-“
 Plenary: Tuesday 10:00

- **Detectors:**
 - H. Ye: “Commissioning of the Belle II Pixel Vertex Detector”
 Detector R&D and Data Handling: Thursday 10:15
 - OH: “First Experiences with the Novel Time of Propagation (TOP) Barrel PID Detector in the Belle II Experiment”
 Detector R&D and Data Handling: Thursday 11:30
 - S. Longo: “A Novel Approach to Calorimeter-based Particle Identification at the Belle II Experiment using Scintillator Pulse Shape Discrimination”
 Detector R&D and Data Handling: Friday 09:30
 - A. Paladino: “Performance of the Belle II Silicon Vertex Detector”
 Poster: Monday 18:30
 Poster: Monday 18:30
SuperKEKB Beam Spot

- Measurement for all three dimensions
- Nanobeam scheme works as intended

<table>
<thead>
<tr>
<th></th>
<th>KEKB</th>
<th>SuperKEKB</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>E_b</td>
<td>3.5</td>
<td>8</td>
</tr>
<tr>
<td>Beam crossing angle</td>
<td>ϕ</td>
<td>22</td>
<td>83</td>
</tr>
<tr>
<td>β function @ IP</td>
<td>β_x/β_y</td>
<td>1200/5.9</td>
<td>32/0.27</td>
</tr>
<tr>
<td>Beam current</td>
<td>I_b</td>
<td>1.64</td>
<td>1.19</td>
</tr>
<tr>
<td>Luminosity</td>
<td>L</td>
<td>2.1×10^{34}</td>
<td>8×10^{35}</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\sigma}_x$ [\mu m]</th>
<th>$\hat{\sigma}_z$ [\mu m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.6 \pm 0.4 (stat) \pm 0.2 (syst)</td>
<td>346.9 \pm 1.8 (stat) \pm 0.1 (syst)</td>
</tr>
</tbody>
</table>
PXD: Inner Vertexing with DEPFET Pixels

- **DEPFET**: internal charge to current amplification
 - Very good S/N for thin sensors
 - Relatively low power (no cooling in active area)
 - Rolling shutter readout (20us frame time)

- Sensors thinned to 75um
 - <0.25% X_0 per layer

- Two layers ($r=14mm$, 22mm)
 - Down to 50*55um pixels
 - 40 sensors total, 7.7Mpixel
PXD: Current Installation

- After technical troubles in module production and assembly: only inner layer installed
 - +2 ladders on outer layer
 - 10/20 sensors (3.8Mpixel)
- Restarted production of all sensor types to provide modules for a complete replacement of the currently installed PXD by 2021
PXD: Readout

- PXD is virtually noise free, but rather long integration time (20us, two full accelerator revolutions)
- ONSEN system reads out full PXD on each trigger and keeps data in local buffer
 - HLT reconstruction identifies regions of interest on PXD surface, ONSEN only transfers relevant parts of PXD hitmaps to EB2/storage
 - DATCON: FPGA based tracking to generate RoIs directly from SVD raw data
- Still PXD accounts for ~75% of total Belle II raw data size
SVD: Silicon Vertex Detector

- Four layers of double-sided strip detectors
 - \(r = 39 \text{mm} \) to \(r = 140 \text{mm} \)
 - Lampshade geometry
- 224k strips
 - 50-75um pitch tangential
 - 160-240um pitch axial
- Read out by APV25 ASICs
 - Adapted from CMS
 - 50ns shaping, 40MHz sampling
 - Partially thinned to 100um
SVD: Production

- Readout chips of central sensors bonded to “Origami” Kapton flex
 - Folded around sensors
- Ladders assembled all around the world:
 - Layer 3: Uni Melbourne, Australia
 - Layer 4: TIFR, India
 - Layer 5: HEPHY, Austria
 - Layer 6: Kavli-IPMU, Japan
- Final assembly into half shells and full vertexing system at KEK
Hawaii Waveform Sampling ASICs

• Hawaii Instrumentation Development Lab spinoff: Nalu Scientific
 – Founded by Isar Mostafanezhad (ex-postdoc of IDLab)

• Commercialisation of switched capacitor waveform sampling ASICs based on IDLab designs

• Three ASICs available:
 – SiRead: 32 channels, ~1 GSa/s
 – ASoC: 8 Channels, ~3 GSa/s
 – Aardvarc: 4 Channels, ~14 Gsa/s
Understanding Belle II

X-Y view

opposite-sign vertices

same-sign vertices + protonID
Understanding Belle II

X-Z view