

Heavy Hadrons -Exotic and Conventional Quarkonium Physics at Belle II

Matthias Hoek

on behalf of the Belle II Collaboration

QCD19 | Montpellier, France | 2.-5.7.2019

SPONSORED BY THE

Federal Ministry of Education and Research JOHANNES GUTENBERG UNIVERSITÄT MAINZ

New Hadrons at 1st Generation B-Factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

M. Hoek

QCD 19 | Montpellier, France | 2nd-5th July 2019

SuperKEKB - Overview

QCD 19|Montpellier, France|2nd-5th July 2019

SuperKEKB – Increasing Luminosity

	E (GeV)	β* _y (mm)	β* _× (cm)	φ	I (A)	L (cm ⁻² s ⁻¹)
	LER/HER	LER/HER	LER/HER	(mrad)	LER/HER	
КЕКВ	3.5/8.0	5.9/5.9	120/120	11	1.6/1.2	2.1 x 10 ³⁴
SuperKEKB	4.0/7.0	0.27/0.30	3.2/2.5	41.5	3.6/2.6	80 x 10 ³⁴

QCD 19 | Montpellier, France | 2nd-5th July 2019

Belle II Detector - Challenges

- Lower boost
 - Better vertex resolution
- □ Higher background
 - Detector occupancy, fake hits
 - Radiation damage
- □ Higher event rate
 - Trigger rate
 - DAQ
 - Computing
- □ Important to have a dedicated phase for
 - Background studies
 - Detector response and alignment

Belle II Detector - Overview

Phase 1

- SuperKEKB accelerator w/o QCS
- □ No Belle II Detector

Phase 2
SuperKEKB w QCS
Belle II w partial Vertex Detector

- Beam optimization
- Background studies
- Detector Calibration

Phase 1

- SuperKEKB accelerator w/o QCS
- □ No Belle II Detector

Phase 2
SuperKEKB w QCS
Belle II w partial Vertex Detector

- Beam optimization
- Background studies
- Detector Calibration

JGU

M. Hoek

QCD 19|Montpellier, France|2nd-5th July 2019

Results from Phase 2 – Detector Performance

100

M. Hoek

Results from Phase 2 - 'Rediscoveries'

Phase 1

- SuperKEKB accelerator w/o QCS
- □ No Belle II Detector

Phase 2
SuperKEKB w QCS
Belle II w partial Vertex Detector

- Beam optimization
- Background studies
- Detector Calibration

Phase 3 Belle II Detector w full Vertex Detector Physics Run

Lifeti

ime

[min]

Pressure [Pa] 10-6

10-6

10-7 10-8

10-5

- 10⁻⁷ 10-8

Int

200

150

500.8 [mA]

500.4 [mA]

β_{x/y}*

β_{x/y}*

100/ 3.00 [mm]

200/ 3.00 [mr

- $\Box \sim 250 \text{ pb}^{-1}$ per day achieved
- Routine data taking

50 × the Belle's $B\overline{B}$ sample by 2027

- □ Rare B decays, New Physics
- CP violation
- \Box τ physics
- Bottomonium (Only Belle II can do it!)
- □ Charmonium and Charmed baryons
- □ Hyperons
- See Belle II Physics Book (arXiv:1808.10567 [hep-ex])

Current samples in fb^{-1} (millions of events), and the proposal for Belle II

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	$\Upsilon(5S)$	$\Upsilon(6S)$	$rac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII	-	-	300 (1200)	$5 \times 10^4 (5.4 \times 10^4)$	1000 (300)	100+400(scan)	3.6%

Running at $\Upsilon(4S) - B$ to $K(C\overline{C})$

- Uniquely done in e⁺e⁻ Bfactories
- □ All quantum numbers available
- □ Allows to calculate absolute *BR*
- Competitive with LHCb
- Allows reconstruction of
 - □ hadronic transitions with π^0, η, ω in final state
 - states decaying with large multiplicities
- □ Further developments:
 - □ $K\gamma$ recoils (search for the spin singlet 1 ${}^{1}D_{2}$)
 - □ Comprehensive study of $KD^{(*)}\overline{D}^{(*)}$ and $KD^{(*)}\overline{D}^{**}$

Running at $\Upsilon(4S)$ – Double Charmonium

- Absolute BR and cross sections
- The legacy of previous generation (mostly Belle):
- $\Box \ e^+e^- \rightarrow \ c\bar{c}(1^-) \ c\bar{c}(0^{\pm})$
 - \Box $J/\psi, \psi'$ recoils
- □ Most recent result: the discovery of $\chi_{c0}(2P)$ (studying the $J/\psi D$ recoil) [Phys.Rev. D95 (2017) 112003]
- Future prospects, with larger statistics (>5 ab⁻¹):
- $\Box \ e^+e^- \to \ c\bar{c}(0^{\pm}) \ c\bar{c}(1^- \text{ or } 1^+)$
 - $\Box \ \eta_c \text{ or } \chi_{c0} \text{ recoils}$
- □ Study of angular distributions:
 - to decouple overlapping states
 - \Box to do cross checks on J^{PC}
- □ Study on double charmonium from $\Upsilon(3S)$
 - □ Belle has evidence of J/ψ , χ_{c1} from $\Upsilon(1,2S)$ [PRD90,112008(2014)]

Running at $\Upsilon(4S)$ – Initial State Radiation

- □ *Y*(4230), *Y*(4260), *Y*(4360) could all be explored
- Unexpected Y(4260) line-shape measured at BESIII, inconsistent among different modes. Could explore w ISR
- □ Cross sections of exclusive $(c\bar{c})$ + hadrons
- □ Search for strange partner of Z(3900) in K^+K^-J/ψ

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^- J/\psi$	4.23	7.5(3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	Y(4260), Y(4360), Y(4660),
			$Z_{c}(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020),$
			$Z_{c}(4025)$
$\omega\chi_{c0}$	4.23	35(15)	Y(4220)
		10ab ⁻¹ (50ab ⁻¹)	

M. Hoek

QCD 19|Montpellier, France|2nd-5th July 2019

Running at $\Upsilon(4S)$ – Two Photon Interactions

- $\Box \ J^{PC} = 0^{-+}, 0^{++}, 2^{++}$
- □ Also uniquely measurable at Belle II.
- □ Could disentangle two of the four states seen by LHCb in $\phi J/\psi$
- need >10 ab⁻¹ to confirm the scalar states found by LHCb

JGU

QCD 19|Montpellier, France|2nd-5th July 2019

Running above $\Upsilon(4S)$ – Accelerator Limits

- \Box $\Upsilon(5S)$: 1 ab⁻¹ "high statistics" run
- □ Settle nature of $\Upsilon(5S)$
- $\Upsilon(5S)$ line shapes
 - Apparent discrepancies in shape in $\pi\pi\Upsilon$ modes vs. $\pi\pi h$ modes
- \Box Precision Z_b measurements
 - \Box Z_h above or below open flavour threshold
- □ Exotica discovery

IGU

Running at $\Upsilon(6S)$ – Accelerator Upgrade needed

- \Box $\Upsilon(6S)$: 100 fb⁻¹ exploratory run
- Comparing $\Upsilon(5S)$ and $\Upsilon(6S)$ decay rates
- Di-pion transitions for discovery of more Z_h states?
- Molecular model for Z_h predicts neutral partners (W_b) , should be $B^*\bar{B}^*$ reachable via radiative transitions
- Further hadronic transitions to W_h states are expected above 11.3 GeV, unreachable at present.
- \square η transition to $\Upsilon(2D)$

QCD 19 Montpellier, France 2nd-5th July 2019

 $I^G(J^P)$:

 $B\bar{B}$

Running at $\Upsilon(3S) - (Anti)Deuteron Production$

- d in cosmic ray have long since been considered a probe for supersymmetric relics in the galactic halo
- d production described with coalescence models tuned on HEP data
 - need of further constraints in the production model
- CLEO and Babar measured the *d* spectrum (no dedicated PID or tracking)
- Belle II:
 - dedicated tracking and PID
 - □ collect \sim 3 × 10⁴ d
- World best estimate of coalescence parameter

Running at $\Upsilon(3S)$ – Quarkonia and Exotics

- Could collect 10-fold BaBar data set at Y(3S) resonance
- Focus on conventional $b\overline{b}$ physics
 - \Box $\Upsilon(1 {}^{3}D_{J})$ triplet: discover J = 1,3
 - $\square \eta_b(1S, 2S): \text{ confirm } m(\eta_b(1S, 2S))$
 - **D** Hadronic $(\pi^0, \pi^+\pi^-, \eta, \omega)$ decays
 - Radiative transitions
- □ Search for H-dibaryon in missing mass $(\Upsilon(3S) \rightarrow H X, H \rightarrow \Lambda\Lambda \text{ or }\Lambda p\pi^{-})$
 - high statistics study near threshold
- □ Rough extrapolation for 300 fb⁻¹ $\Upsilon(3S)$
 - □ ~60 Million events with one Λ or $\overline{\Lambda}$
 - □ ~3 Million events with one $\Lambda\overline{\Lambda}$ pair

Outlook

- □ Upgrade of SuperKEKB finished
- Belle II started to take data
- □ Goal is to integrate 50 × Belle data by 2027
- Unique production methods to probe charmonium(like) systems
- Υ(3S) peak: if high luminosity running does not spoil the beam energy spread, at least 300 fb⁻¹ data taking is planned
- □ $\Upsilon(5S)$ peak: at least 1 ab⁻¹ is envisaged, to have impactful new results
- \Box $\Upsilon(6S)$ peak: a pilot run of 10 fb⁻¹, then up to 100 fb⁻¹
- Scan of the high energy region (10.5 to 11 GeV): 400 fb⁻¹?

