

Time-dependent CP violation in **b** → **s** γ transitions at Belle II

Outline

- 1. Motivation
- 2. Time-dependant evolution
- 3. Analysis strategies
- 4. Electroweak FCNCs
- 5. TDCPV of $B^0 \rightarrow K_S^0 \pi^0 \gamma^0$
- 6. K_s^0 reconstruction
- 7. Photon polarization
- 8. Predictions for Belle II
- 9. Summary

Motivation:

In Standard Model $\mathbf{b} \rightarrow \mathbf{s} \ \mathbf{\gamma} \ \mathbf{depend}$ on **b** flavor

- ✤ allowed
- suppressed by m_s/m

Presence of significant mixing-induced CP violation would indicate the presence of right handed currents and clear hint of new physics.

• This type of new physics does not require a new phase.

Time-dependant evolution at Belle II

- Fully reconstructed one of B mesons which decays to CP eigenstates 1.
- Tag-side determines its flavour (efficiency \approx 30%) 2.
- 3. Proper time (Δt) is measured from decay-vertex difference (Δz).

Inclusive analysis strategies for $b \rightarrow X_{c} \gamma$

Fully inclusive:

- Exploit clean decay \succ environment on Belle II
- Can be fully hadronic tag \succ (have full event information)
- ...or semi-leptonic tag \succ (don't have full event)

Sum-of-exclusives:

- Reconstruct, the 'X' \succ from many exclusive decays: $X_s \rightarrow Kn\pi$, ЗКm π , К η m π (n>1, m≥1)
- \succ Know flavor of B

Know isospin

 \succ

reco. method	tagging	effi.	S/B	q	p_B	$A_{\rm CP}$	Δ_{0+}	$\Delta A_{\rm CP}$
sum-of-exclusive	none	high	moderate	s or d	yes	yes	yes	yes
fully-inclusive	had. ${\cal B}$	very low	very good	\boldsymbol{s} and \boldsymbol{d}	yes	yes	yes	yes
	SL B	very low	very good	\boldsymbol{s} and \boldsymbol{d}	no	yes	yes	yes
	L	moderate	good	\boldsymbol{s} and \boldsymbol{d}	no	yes	no	no
	none	very high	very bad	\boldsymbol{s} and \boldsymbol{d}	no	no	no	no

Electroweak FCNCs

We can write the amplitude including RH contribution as:

Wilson coefficients

(calculated perturbatively; encode short-distance physics)

Products of field operators

(non-perturbative hadronic matrix elements; Heavy quark expansion in inverse powers of m_{b})

We have a constraint from inclusive branching ratio measurement:

 $\mathcal{M}(b \to s\gamma) \simeq -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[\underbrace{(C_{7\gamma}^{\mathrm{SM}} + C_{7\gamma}^{\mathrm{NP}}) \langle \mathcal{O}_{7\gamma} \rangle}_{\propto \mathcal{M}_I} + \underbrace{C_{7\gamma}^{\prime \mathrm{NP}} \langle \mathcal{O}_{7\gamma}^{\prime} \rangle}_{\propto \mathcal{M}_R} \right]$

$$Br(B \to X_S \gamma) \propto |C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2$$

The polarization measurement carries information on

Time dependent CP violation analysis of $B^0 \rightarrow K_s^{\ 0} \pi^0 \gamma$

- $b \rightarrow s\gamma_R$ is helicity suppressed (m_s/m_b) wrt $b \rightarrow s\gamma_L$
- $B^0 \rightarrow f_{CP} \gamma_R$ interferes with $B^0 \rightarrow B^0$ -bar $\rightarrow f_{CP} \gamma_R$ only for helicity suppressed b $\rightarrow s\gamma_R$ decay
- TDCPV analysis is sensitive to the decay rate of b into "wrongly" polarized γ .
- New physics can enhance the $b \rightarrow s\gamma_R^{}$ decay rate

BaBar (N_{BB} = 467 * 10⁶)^[PRD 78 (2008) 071102] Belle (N_{BB} = 535 · 10⁶)^[PRD 74 (2006) 111104(R)]

K_s⁰ reconstruction

• The reconstruction of K_s^{0} is the only source of information to determine the vertex position of B_{sig}^{0} .

• The channel of $K_s^{\ 0}$ reconstruction is $K_s^{\ 0} \rightarrow \pi^+ \pi^-$

 The K_s⁰ flight direction is extrapolated backwards and matched to the estimated region in which the e⁺ e⁻ collisions take place.

	K_S^0	π^0	γ	B^0
ε^{reco}	58.6~%	53.7~%	83.4~%	26.2~%

Photon polarization

Indirect probe of photon polarization by measuring:

$$\mathcal{A}_{CP}(t) \equiv \frac{\Gamma(\bar{B}(t) \to f_{CP}\gamma) - \Gamma(B(t) \to f_{CP}\gamma)}{\Gamma(\bar{B}(t) \to f_{CP}\gamma) + \Gamma(B(t) \to f_{CP}\gamma)} \simeq -2\left(\frac{\boldsymbol{m}_{s}}{\boldsymbol{m}_{b}}\right) \sin(2\boldsymbol{\beta}) \sin(\Delta \boldsymbol{m} \cdot t)$$

Photon polarization

Standard Model makes definite prediction of photon helicity (D. Atwood et al., Phys. Rev. Lea. 79, 185 (1997)):

•
$$\underline{B}^{0} \rightarrow X_{s} \gamma_{R}$$

• $\overline{B}^{0} \rightarrow X_{s} \gamma_{L}$

If a helicity flip occurs, the photon will also flip its helicity, producing

 $B^0 \rightarrow X_s \gamma_1$

No common final state for B⁰ and B⁰-bar

- Suppression of asymmetry S due to interference between B⁰ mixing and decay diagrams
- TD CP asymmetry measurements give an indirect measurement of photon polarization.

Predictions for Belle II

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B \rightarrow X_s \gamma)_{inc}^{lep-tag}$	5.3%	3.9%	3.2%
$Br(B \to X_s \gamma)_{inc}^{had-tag}$	13%	7.0%	4.2%
$Br(B \to X_s \gamma)_{sum-of-ex}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.1%	0.81%	0.63%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%
$A_{CP}(B \rightarrow X_s \gamma)_{\text{sum-of-ex}}$	1.3%	0.52%	0.19%
$A_{CP}(B^0 \rightarrow X_s^0 \gamma)_{\text{sum-of-ex}}$	1.8%	0.72%	0.26%
$A_{CP}(B^+ \to X_s^+ \gamma)_{\text{sum-of-ex}}$	1.8%	0.69%	0.25%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm lep-tag}$	4.0%	1.5%	0.48%
$A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	8.0%	2.2%	0.70%
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.5%	0.98%	0.30%
$\Delta A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	16%	4.3%	1.3%

	WA (2017)		5 ab^{-1}		50 ab^{-1}	
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	0.0090
ϕK^0	0.12	0.14	0.048	0.035	0.020	0.011
$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	0.008
ωK_S^0	0.21	0.14	0.08	0.06	0.024	0.020
$K^0_S \pi^0 \gamma$	0.20	0.12	0.10	0.07	0.031	0.021
$K_S^0 \pi^0$	0.17	0.10	0.09	0.06	0.028	0.018

Summary

- 1. Belle II provides a large dataset + improved detector and physics software (Flavor tagging and Vertex reconstruction).
- 2. Unique possibilities for modes with final state with neutral particles (π^0 , γ)
- 3. For $b \rightarrow s \gamma$ transitions we can safely assume that all the channels will be dominated by the statistical uncertainties.
- 4. For most of the penguin dominated modes Belle II is projected to reduce the WA errors by a factor of:
- 2 to 3 already with 5 ab^{-1}
- 8 with 50 ab^{-1}

Backup

Belle II Nano-Beam

	KEKB Achieved	SuperKEKB LER HER
RF frequency f [MHz]	508.9	The second s
# of Bunches N	1584	2500
Horizontal emittance ɛx [nr	m] 18 24	3.2 4.6
Beta at IP $\beta x^* / \beta y^*$ [mm]	1200/5.9	32/0.27 25/0.30
beam-beam param. ξy	0.129 0.090	0.088 0.081
Bunch Length Sz [mm]	6.0 6.0	6.0 5.0
Horizontal Beam Size sx*	[µm] 150 150	10 11
Vertical Beam Size sy*	[nm] 0.94	48 62
Half crossing angle ϕ [mr	ad] 11	41.5
Beam energy Eb [GeV]	3.5 8	4 7.007
Beam currents Ib [A]	1.64 1.19	3.6 2.6
Lifetime t [min]	133 200	6 6
Luminosity L [cm ⁻² s ⁻¹]	2.1 x 10 ³⁴	8 x 10 ³⁵

Interaction vertex

 Distribution of the longitudinal component of the interaction vertex is much smaller than the bunch length

