

Approved plots : Study of $B \to K^* \gamma$ decays at Phase III

M. Yonenaga* and H. Kakuno[†]

Tokyo Metropolitan University, Tokyo, Japan

A. Ishikawa ‡

KEK, Ibaraki, Japan

^{*}Electronic address: yonenaga@hepmail.phys.se.tmu.ac.jp

 $^{^{\}dagger}\mbox{Electronic}$ address: kakuno@phys.se.tmu.ac.jp

 $^{^{\}ddagger}\mbox{Electronic}$ address: akimasa.ishikawa@kek.jp

FIG. 1: The beam-constrained mass (m_{bc}) distribution of $B^0 \to K^{*0}\gamma \to K^+\pi^-\gamma$ decay candidates in a window $-0.2 \text{ GeV} < \Delta E < 0.08 \text{ GeV}$. The fit contains the following components: an ARGUS function to model background from the continuum and combinatorial B decays (dashed blue line); a Crystal Ball summed with a second ARGUS function to describe peaking backgrounds and highermass resonance feed-down (dashed red line); and a Crystal Ball for the signal. The total fit with the signal component is the solid blue line and the data are overlaid as black markers. The signal component has a significance of 4.4 σ , and the yield of signal events is found to be 19.1 ± 5.2 (error is statistical only).

FIG. 2: The beam-constrained mass (m_{bc}) distribution of $B^+ \to K^{*+}\gamma \to K^+\pi^0\gamma$ decay candidates in a window $-0.2 \text{ GeV} < \Delta E < 0.08 \text{ GeV}$. The fit contains the following components: an ARGUS function to model background from the continuum and combinatorial B decays (dashed blue line); a Crystal Ball summed with a second ARGUS function to describe peaking backgrounds and highermass resonance feed-down (dashed red line); and a Crystal Ball for the signal. The total fit with the signal component is the solid blue line and the data are overlaid as black markers. The signal component has a significance of 3.7 σ , and the yield of signal events is found to be 9.8 ± 3.4 (error is statistical only).

FIG. 3: The beam-constrained mass (m_{bc}) distribution of $B^+ \to K^{*+}\gamma \to K_S^0 \pi^+ \gamma$ decay candidates in a window $-0.2 \text{ GeV} < \Delta E < 0.08 \text{ GeV}$. The fit contains the following components: an ARGUS function to model background from the continuum and combinatorial B decays (dashed blue line); a Crystal Ball summed with a second ARGUS function to describe peaking backgrounds and highermass resonance feed-down (dashed red line); and a Crystal Ball for the signal. The total fit with the signal component is the solid blue line and the data are overlaid as black markers. The signal component has a significance of 2.1 σ , and the yield of signal events is found to be 6.6 ± 3.1 (error is statistical only).

FIG. 4: The beam-constrained mass (m_{bc}) distribution of $B^+ \to K^{*+}\gamma$ decay candidates in a window $-0.2 \text{ GeV} < \Delta E < 0.08 \text{ GeV}$. The fit contains the following components: an ARGUS function to model background from the continuum and combinatorial B decays (dashed blue line); a Crystal Ball summed with a second ARGUS function to describe peaking backgrounds and higher-mass resonance feed-down (dashed red line); and a Crystal Ball for the signal. The total fit with the signal component is the solid blue line and the data are overlaid as black markers. The signal component has a significance of 4.4 σ , and the yield of signal events is found to be 17.0 ± 4.5 (error is statistical only).

FIG. 5: Stacked histograms of the beam-constrained mass (m_{bc}) distributions for all $B \to K^* \gamma$ decay candidates, in a window of $-0.2 \,\text{GeV} < \Delta E < 0.08 \,\text{GeV}$. The red histogram contains $B^0 \to K^{*0} \gamma \to K^+ \pi^- \gamma$ decay candidates, the green is $B^+ \to K^{*+} \gamma \to K^+ \pi^0 \gamma$, and the blue is $B^+ \to K^{*+} \gamma \to K_S^0 \pi^+ \gamma$.