

BELLE2-NOTE-PL-2019-020 DRAFT Version 1.1 August 2, 2019

Study of $B^0 \to J/\psi \ K^{*0}(\to K^+\pi^-)$ decays with early phase3 data

Miho Fujii and Kenkichi Miyabayashi*

Nara Women's University, Nara, Japan Abstract

We report a study for reconstruction of $B^0 \to J/\psi K^{*0}$ decays with the early 2019 phase 3 data of the Belle II experiment.

^{*}Electronic address: miyabaya@cc.nara-wu.ac.jp $% {\sc l} = (1,1,2,\ldots,n)$

We combined the candidate event samples by $J/\psi \to e^+e^-$ and $\mu^+\mu^-$ modes, there are 50 events in the signal box. With this yield of candidate events, we found that fit can converge with floating the mean and σ of the signal Gaussian. We select events with a ΔE in the range $-0.07 \text{ GeV} < \Delta E < 0.03 \text{ GeV}$ in $J/\psi \to e^+e^-$ case and $-0.03 \text{ GeV} < \Delta E < 0.03 \text{ GeV}$ in $J/\psi \to \mu^+\mu^-$ case, and performed a fit to the $M_{\rm bc}$ distribution. The probability density function (PDF) is composed by summing the signal component with a single Gaussian with a floating mean (μ) and width (σ) and the background component with an ARGUS function with a fixing $m_0 = 5.291 \text{ GeV}$, power (p) = 0.5 and slope (c) = -50.0. The plots requesting approval are shown in Fig. 1. The signal Gaussian's mean = $5.28150 \pm 0.00040 \text{ GeV}/c^2$ and $\sigma = 2.71 \pm 0.30 \text{ MeV}/c^2$. We got $N_{\rm sig} = 48.6 \pm 7.0$ events as the signal yield.

FIG. 1: For $J/\psi \to e^+e^-$ and $\mu^+\mu^-$ cases combined, ΔE distribution in 5.27 GeV/ $c^2 < M_{\rm bc} < 5.29$ GeV/ c^2 (upper left), $M_{\rm bc}$ - ΔE 2D distribution (upper right) and $M_{\rm bc}$ distribution with applying the proper ΔE requirements (lower).