Approved plots for $J / \psi \rightarrow \ell^{+} \ell^{-}$in Proc9

D. Ferlewicz M. Milesi, ${ }^{\dagger}$ and P. Urquijq ${ }^{\ddagger}$
School of Physics, University of Melbourne, Victoria, Australia

Abstract
Approved plots for the dilepton yields of $J / \psi \rightarrow \ell^{+} \ell^{-}$for the analysis documented in BELLE2-NOTE-PH-2019-050.

[^0]

FIG. 1: The dielectron invariant mass of $J / \psi \rightarrow e^{-} e^{-}$candidates for an integrated luminosity of $2.63 \mathrm{fb}^{-1}$ using the basf2 software release release-03-02-02 on the hlt hadron skim. This data set includes Phase 3 physics runs only, excluding runs 916 - 1005 and $1216-1371$ from experiment 7. The selection criteria are as follows: $|d r|<2.0 \mathrm{~cm},|d z|<5.0 \mathrm{~cm}, p_{\text {lab }}>0.1 \mathrm{GeV} / c$ and electronID >0.95 for each electron candidate. A vertex fit using TreeFitter was applied, selecting candidates with a p-value >0.001. A bremsstrahlung correction was applied by adding the momentum and cluster energy of a photon with $E<1.0 \mathrm{GeV}$ within a 5° cone of the electron candidate.
A Crystal Ball function summed with a Bifurcated Gaussian is used to model the signal and a first order polynomial is used to model the background.

FIG. 2: The dimuon invariant mass of $J / \psi \rightarrow \mu^{+} \mu^{-}$candidates for an integrated luminosity of $2.63 \mathrm{fb}^{-1}$ using the same environment and track selection as above, but with muonID >0.95 for each muon candidate.
A Gaussian function summed with a Bifurcated Gaussian is used to model the signal and a first order polynomial is used to model the background.

[^0]: *Electronic address: daniel.ferlewicz@unimelb.edu.au
 ${ }^{\dagger}$ Electronic address: marco.milesi@unimelb.edu.au
 ${ }^{\ddagger}$ Electronic address: purquijo@unimelb.edu.au

