Approved plots for $J/\psi \rightarrow \ell^+\ell^-$ in Proc9

D. Ferlewicz, M. Milesi and P. Urquijo

School of Physics, University of Melbourne, Victoria, Australia

Abstract

Approved plots for the dilepton yields of $J/\psi \rightarrow \ell^+\ell^-$ for the analysis documented in BELLE2-NOTE-PH-2019-050.

*Electronic address: daniel.ferlewicz@unimelb.edu.au
†Electronic address: marco.milesi@unimelb.edu.au
‡Electronic address: purquijo@unimelb.edu.au
FIG. 1: The dielectron invariant mass of $J/\psi \rightarrow e^-e^-$ candidates for an integrated luminosity of 2.62 fb$^{-1}$ using the basf2 software release release-03-02-02 on the hlt_hadron skim. This data set includes Phase 3 physics runs only, excluding runs 916 – 1005 and 1216 – 1371 from experiment 7. The selection criteria are as follows: $|dr| < 2.0$ cm, $|dz| < 5.0$ cm, $p_{lab} > 0.1$ GeV/c and electronID > 0.95 for each electron candidate. A vertex fit using TreeFitter was applied, selecting candidates with a p-value > 0.001. A bremsstrahlung correction was applied by adding the momentum and cluster energy of a photon with $E < 1.0$ GeV within a 5° cone of the electron candidate. A Crystal Ball function summed with a Bifurcated Gaussian is used to model the signal and a first order polynomial is used to model the background.
Belle II 2019 Preliminary

\[\int L \, dt = 2.62 \text{ fb}^{-1} \]

\[N_{\text{sig}} = 2186 \pm 56 \]

FIG. 2: The dimuon invariant mass of \(J/\psi \rightarrow \mu^+\mu^- \) candidates for an integrated luminosity of 2.62 fb\(^{-1}\) using the same environment and track selection as Fig. 1, but with \text{muonID} > 0.95 for each muon candidate.

A Gaussian function summed with a Bifurcated Gaussian is used to model the signal and a first order polynomial is used to model the background.

Belle II 2019 Preliminary

\[\int L \, dt = 2.62 \text{ fb}^{-1} \]

\[N_{\text{sig}} = 1608 \pm 54 \]

FIG. 3: The dielectron invariant mass of \(J/\psi \rightarrow e^-e^- \) candidates for an integrated luminosity of 2.62 fb\(^{-1}\) using the same environment and track selection as the Fig. 1 but with further selection criteria applied to \(J/\psi \) candidates in \(B\bar{B} \) events. The momentum of the reconstructed \(J/\psi \) candidate in the \(\Upsilon(4S) \) frame is required to be below 2.0 GeV/c and the ratio between the (event-based) second-order and zeroth-order Fox-Wolfram moment, \(R_2 \), is below 0.4.
FIG. 4: The dimuon invariant mass of $J/\psi \rightarrow \mu^+\mu^-$ candidates for an integrated luminosity of 2.62 fb$^{-1}$ using the same environment and track selection as Fig. 2, with extra selection criteria applied to isolate J/ψ candidates in $B\bar{B}$ events, listed in Fig. 3.