Measurement of the CKM angle ϕ_3 at Belle II

Resmi P K

(On behalf of Belle II Collaboration)

Indian Institute of Technology Madras

Chennai, India

J-SYMPOSIUM 2019

Krakow, Poland

June 26, 2019

Outline of the talk

Introduction

- CKM matrix
- Current experimental status of parameters
- CKM angle ϕ_3/γ
 - Estimation
 - Different methods
 - World average values
- Status of Belle II experiment
- ϕ_3 sensitivity at Belle II

Summary

• The CKM matrix is of the form

 \bullet Unitarity conditions between 1^{st} and 3^{rd} columns

- *CP* violation is measured as the complex phase coming in CKM elements V_{ub} and V_{td} .
- A precise measurement required to establish SM description of *CP* violation.

CKM parameters - current status

Current best results for CKM angles [1,2]

$$\phi_1^{\text{measured}} = (21.9^{+0.7}_{-0.7})^\circ$$

•
$$\phi_3^{\text{measured}} = (73.5^{+4.2}_{-5.1})^{\circ}$$

•
$$\phi_3^{\text{predicted}} = (65.3^{+1.0}_{-1.7})^{\circ}$$

Constraints from loop quantities.

¹http://ckmfitter.in2p3.fr

 $^{2} {\tt http://www.slac.stanford.edu/xorg/hflav/triangle/moriond2018/index.shtml}$

ϕ_{3} measurements from B ightarrow DK decays

• Determine ϕ_3 via interference between $B^- \rightarrow D^0 K^$ and $B^- \rightarrow \bar{D^0} K^-$, tree-level diagrams $\Rightarrow 10^{-7}$ theoretical uncertainty ^[3].

- Statistically limited due to small branching fractions of decays involved.
- The statistical uncertainty on $\phi_3 \propto r_B$.
- $r_B^{DK} \approx 0.1$ and $r_B^{D\pi} \approx 0.005$; So $B \to D\pi$ decays are not sensitive!
- But they serve as excellent calibration modes due to similar topology as of $B \rightarrow DK$. Larger sample $(\frac{\mathcal{B}(B \rightarrow D\pi)}{\mathcal{B}(B \rightarrow DK)} \approx 10)$ due to Cabibbo-favoured nature.
- ³J. Brod, J. Zupan, JHEP **01**, 051 (2014)

Primary methods

• The methods differ according to the *D* final state considered. **GLW** PLB 253, 483 (1991), PLB 265, 172 (1991)

- *CP* eigenstates like K^+K^- , $\pi^+\pi^-$, $K^0_S\pi^0$ etc.
- CP-content as external input for multibody decays like $\pi^+\pi^-\pi^0$.

ADS PRL 78, 3357 (1997)

- DCS modes $K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}, K^{+}\pi^{-}\pi^{+}\pi^{-}$
- δ_D , r_D charm inputs.

GGSZ PRD 68, 054018 (2003)

- Multibody self-conjugate states
- Model-dependent and independent approaches

Model-independent method

 Model-independent method by binning the Dalitz plot of multibody D final states like K⁰_Sπ⁺π⁻, K⁰_SK⁺K⁻, K⁰_Sπ⁺π⁻π⁰.

- c_i , s_i cos and sin of the strong phase difference between D^0 and $\overline{D^0}$ averaged over the region of phase space \Rightarrow input from CLEO-c or BESIII.
- K_i , $\bar{K_i}$ fraction of flavour-tagged D^0 and $\bar{D^0}$ events from $D^{*\pm} \to D\pi^{\pm}$ decays.

ϕ_3 : Average values

• From all measurements of $B \rightarrow D(^*)K(^*)$ from GLW, ADS, and GGSZ.

Belle + BaBar + LHCb run I CKM . ---- Belle Combined --- LHCb BaBar Full Frequentist treatment on MC basis 1.0 0.8 0.6 o-value 0.2 0.0 0 20 60 80 100 120 140 160 180 $(\phi_3)_{\text{Belle}} = (73^{+13}_{-15})^{\circ[4]}$ $(\phi_3)_{\mathsf{BaBar}} = (69^{+17}_{-16})^{\circ[5]}$ $(\phi_3)_{LHCb} = (74.0^{+5.0}_{-5.8})^{\circ [6]}$

⁴PRD **85**, 112014 (2012) ⁵PRD **87**, 052015 (2013) ⁶LHCb-CONF-2018-002

 Dominated by LHCb result and GGSZ method.

$$(\phi_3)_{\text{Combined}} = (73.5^{+4.2}_{-5.1})^{\circ}$$

SuperKEKB and Belle II experiment

• Center-of-mass energy at $\Upsilon(4S)$ resonance which decays to $B\overline{B}$ pair.

Important improvements for ϕ_3 • Improved K_S^0 reconstruction efficiency

• Better K/π separation

Status of Belle II

Results from phase II

• $D^{*\pm}
ightarrow D(K^0_{
m S}\pi^0)\pi^{\pm}_{
m slow}$ decays : *CP*-odd eigenstate

Resmi P K, IIT Madras

Results from phase II

Resmi P K, IIT Madras Measurement of the CKM angle ϕ_3 at Belle II 12 /

• About 245 *B* candidates reconstructed from hadronic final states.

ARGUS Results on B Decays via b -* C Transitions

Henning Schröder DESY, Hamburg, Germany

ABSTRACT

Using the ARGUS detector at the $e^{-}e^{-}$ storage ring DORIS II at DESY new results on beauty physics have been obtained. About 200 B mesons have been reconstructed in 26 hadronic decay modes. The masses and lifetimes of charged and neutral B mesons are the same within the errors. Fast J/⁺ mesons (1.4 < p)² < 2.0 GeV(e^{-}) in B decase have helicity O. to indication of on-pills decasy of the T(45) into IAb mesons is shown.

• $B \rightarrow D\pi$ decays are good calibration modes for ϕ_3 estimation from $B \rightarrow DK$ decays.

ϕ_3 sensitivity at Belle II

•
$$B^{\pm}
ightarrow D(K^0_{
m S}\pi^+\pi^-)K^{\pm}$$
 : golden mode at Belle II.

•
$$\delta(\phi_3)^{50 \text{ ab}^{-1}} = 3.0^{\circ}$$
 (with 10 fb⁻¹ BESIII data)

- $B^{\pm} \rightarrow D(K_{\rm S}^0 \pi^+ \pi^- \pi^0) K^{\pm}$: another promising mode.
- $\delta(\phi_3)^{50 \text{ ab}^{-1}} = 4.4^{\circ[7]}$ (Assuming $\epsilon \times BF$ similar to $K_S^0 \pi^+ \pi^-$).

 The GLW modes from *B* → *D*^(*)*K* also has significant impact on the projected uncertainty.

• Better PID, $K_{\rm S}^0$ selection, continuum suppression would bring further improvements.

⁷JHEP **01**, 82 (2018)

- Current precision on average value of ϕ_3 is $\approx 5^{\circ}$.
- Precise measurement is crucial for establishing SM picture of *CP* violation.
- A combined sensitivity of **1.6**° is expected with
 - full 50 ab⁻¹ data,
 - additional $D^{(*)}$ modes.

Expected precision on CKM parameters with 50 ab⁻¹ Belle II data^[8].

 Measurements of D hadronic parameters from 10 fb⁻¹ BESIII data is crucial.

⁸B2TIP report arXiv:1808.10567 [hep-ex]