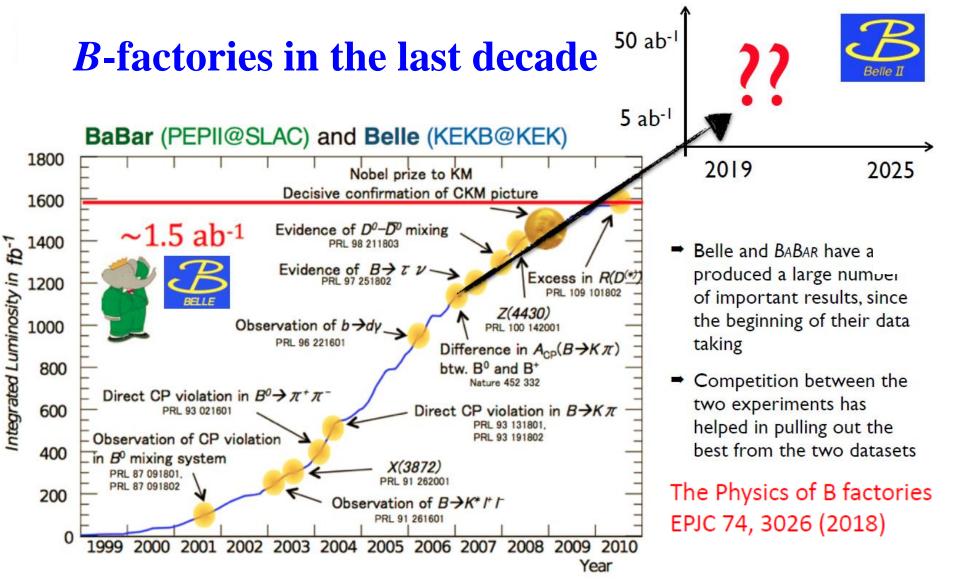

The prospect of Belle II

Chengping Shen

shencp@fudan.edu.

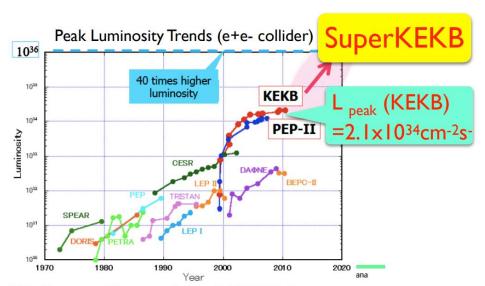


- > The status of Belle II accelerator/dector
- > Belle II luminosity projection
- **B** signals in Phase 2 data
- **➤** Advantage in Belle II physics analysis
- > Prospect in various physics topics including: CKM,

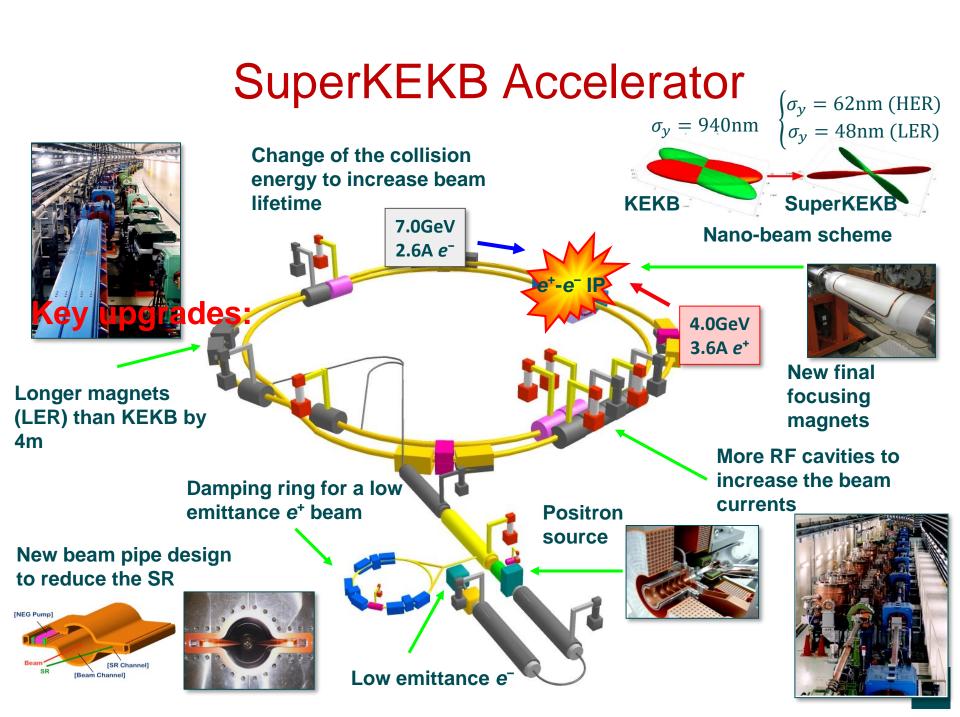
Test Lepton Universality; LFV τ Decays; Hadron

Spectroscopy;

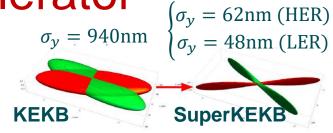
Due to rich physics, here I just selected a few topics as examples. For more details, please refer to Belle II physics book: arXiv:1808.10567


Belle II will provide a significantly larger data sample (x50 Belle) that will allow to continue the investigation with a much more powerful instrument

SuperKEKB/Belle II


New intensity frontier facility at KEK

- Target luminosity ; $L_{peak} = 8 \times 10^{35} cm^{-2} s^{-1}$ $\Rightarrow \sim 10^{10} \text{ BB}, \tau^{+}\tau^{-} \text{ and charms per year !}$ $L_{int} > 50 \text{ ab}^{-1}$
- Rich physics program
 - Search for New Physics through processes sensitive to virtual heavy particles.
 - New QCD phenomena (XYZ, new states including heavy flavors) + more



The first particle collider after the LHC!

SuperKEKB Accelerator

Change of the collision energy to increase beam lifetime

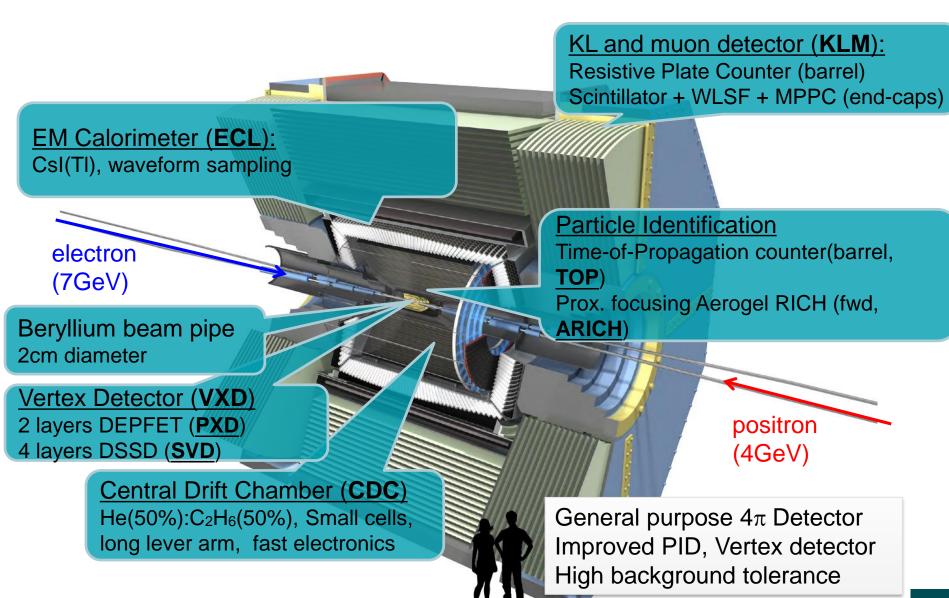
)-beam scheme

Key upgrades:

Luminosity =
$$\frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \frac{I_{\pm}\zeta_{\pm y}}{\beta_y^*} \frac{R_L}{R_y}$$

Longer magnets (LER) than KEKB by 4m		KEKB (HER/LER)	SuperKEKB (HER/LER)	·e F
Dam	β _y * (mm)	5.9/5.9	0.30/0.27	x20 rea
emit	I _{beam} (A)	1.19/1.64	2.6/3.6	x2 ren
New beam pipe design	\mathcal{L} (cm ⁻² s ⁻¹)	2.11x10 ³⁴	80x10 ³⁴	x40
to reduce the SR	$\int \mathcal{L}dt$ (ab $^{-1}$)	1	50	x50
				,-

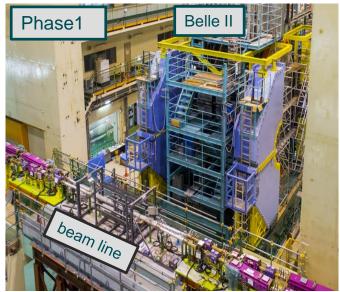
Low emittance e

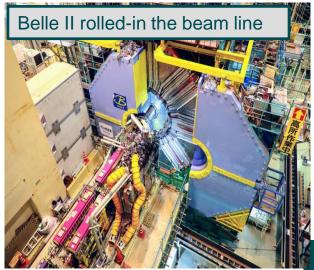


RF cavities to ase the beam

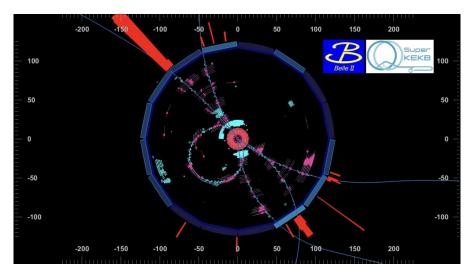
nts

Belle II Detector

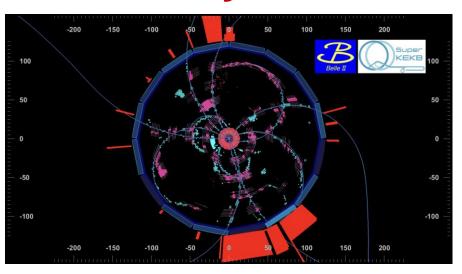

From the Belle to Belle II


What has been changed?

- PXD, vertex resolution in z direction (beam direction) will be factor 2 better than before:
 50 μm (Belle) → 25 μm (Belle II)
- TOP: no TOF (time-of-flight) detector anymore, but TOP (time-of-propagation) will do the timing of the Cerenkov light. Time resolution ~50 ps. TOP detector surface is polished to nanometer precision for total reflection of Cerenkov light
- KLM: inner 2 layers of barrel + all layers in the endcap replaced by scintillators, because of large background
- ECL readout electronics exchanged, fast FADC sampling for identify pileup of pulses
- Huge gain in luminosity in Belle II compared to Belle: factor x40. How?
 - factor 2 by beam current: 1.64/1.19 A (Belle) \rightarrow 3.6/2.6 A for e⁺(e⁻) beam in Belle II
 - factor 20 by "nano-beam" principle (collision point in vertical direction will be only 59 nm)


Belle II and SuperKEKB Upgrade History

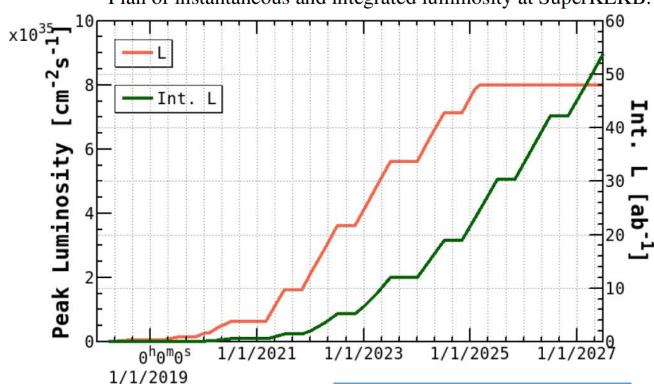
- 2010, Belle and KEKB operation completed
 - Started upgrade to Belle II and SuperKEKB
- 2016 Phase 1 Commissioning
 - SuperKEKB single beams
 - no collisions, without Belle II
- 2017 Belle II Detector rolled-in to the beam line
- 2018 March-July Phase 2 Commissioning
 - First e+e- collisions at SuperKEKB
 - Confirm the nano-beam scheme
 - Data taking with Belle II Detector (w/o VXD, but background detectors (BEASTII)
 - Confirm the background condition for final VXD
- 2019 March- Phase 3 Operation
 - Physics run with the full Belle Detectors with the VXD (PXD+SVD) installed
 - Aim at the design luminosity 8x10³⁵/cm²/s
 - Search for the new physics



Kick-off of the Belle II Phase 3 Physics Run

The first hadronic event in the Belle II Phase3 physics run

The first "B - anti-B like" event in the Belle II Phase3 physics run

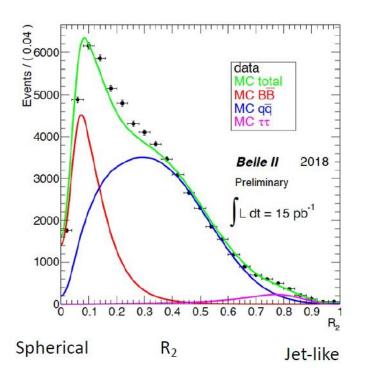

On March 25 19:44 (JST), 2019, electron-positron collisions have restarted at the SuperKEKB collider, and the Belle II experiment has now kicked off its physics data taking.

Belle II will perform a broad range of extremely high precision and fundamental measurements in flavor physics, particularly of properties of the bottom quark, charm quark, and tau lepton. In recent years, there has been a great deal of excitement worldwide about a number of intriguing hints of new physics in the decays of B mesons, particles which contain bottom quarks.

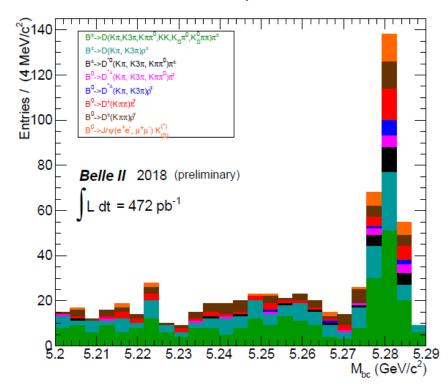
10

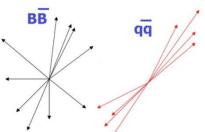
SuperKEKB Luminosity Projection

Plan of instantaneous and integrated luminosity at SuperKEKB.


Phase 3 (w/ full detector)

- lab-1 after I year
- 5ab-1 by ~2022
- 50ab-1 by ~2027


Process	σ (nb)
bb	1.1
сс	1.3
Light quark qq	~2.1
τ⁺τ-	0.9
e⁺e⁻	~40


Rediscovery of B mesons

Event Shape Distribution (Fox-Wolfram R2)

$$M_{bc} = \sqrt{(E_{cm}/2)^2 - p_{recon}^2}$$

- Clearly observed the excess of BB events in early phase 2 Data
- "Rediscovered" reconstructed B mesons.

Full reconstruction analysis chain is working well.

Physics at Belle II

Observables	Expected the. accu-	Expected	Facility (2027)
	racy	exp. uncertainty	
UT angles & sides			
ϕ_1 [°]	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
ϕ_3 [°]	*** CKM	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \to \eta' K^0)$	*** CPV	0.01	Belle II
$A(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$A(B \to K^+\pi^-) [10^{-2}]$	***	0.20	LHCb/Belle II
(Semi-)leptonic	** (Semi)		
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$		3%	Belle II
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	** LEPTONIC	7%	Belle II
$R(B \to D au u)$	*** LFUV	3%	Belle II
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb

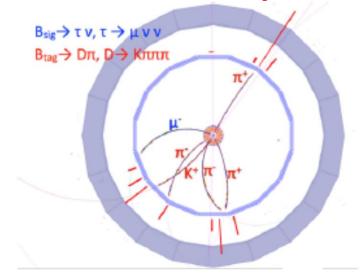
Ultimate precision, 50 ab-1

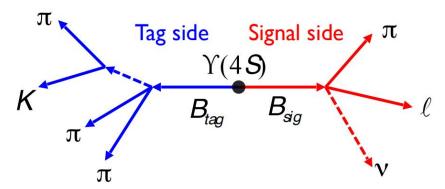
QUARKONIUM

DARK SECTOR

Very Rich Physics Program!

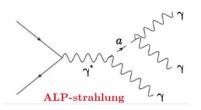
E. Kou, P. Urquijo et al. Belle II Physics book, arXiv: 1808.10567 (Accepted to PTEP)


Radiative & EW Penguins	_			
$\mathcal{B}(B \to X_s \gamma)$	**		4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	***		0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***		0.03	Belle II
$S(B o ho\gamma)$	**	EWP	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**		0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***		15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***		20%	Belle II
$R(B \to K^*\ell\ell)$	***		0.03	Belle II/LHCb
Charm				
$\mathcal{B}(D_s \to \mu \nu)$	***		0.9%	Belle II
$\mathcal{B}(D_s o au u)$	***	CHARM	2%	Belle II
$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$	**		0.03	Belle II
$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***		0.03	Belle II
$\phi(D^0 \to K_S^0 \pi^+ \pi^-) \ [^\circ]$	***		4	Belle II
Tau				
$\tau \to \mu \gamma \ [10^{-10}]$	***		< 50	Belle II
$\tau \to e\gamma \ [10^{-10}]$	***	TAU	< 100	Belle II
$\tau \to \mu \mu \mu \ [10^{-10}]$	***		< 3	Belle II/LHCb


Advantage of e⁺e⁻ Flavor Factory

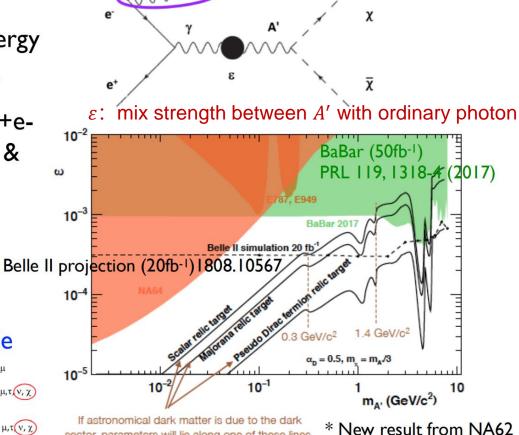
- Clean environment
 - Efficient detection of neutrals $(\gamma, \pi^0, \eta, ...)$
- Quantum correlated B⁰B⁰ pairs
 - High effective flavor tagging efficiency:
 ~34%(Belle II) ~3% (LHCb)
- Large sample of T leptons
 - Search for LFV T decays at O(10-9)

- A powerful tool to measure;
 - b→u semileptonic decays (CKM)
 - decays with large missing energy
- Systematics different from LHCb
 - Two experiments are required to establish NP


$$B \rightarrow \pi I V$$

 $B \rightarrow \tau V, D \tau V$
 $B \rightarrow K V V$

Dark Sector Physics at Belle II

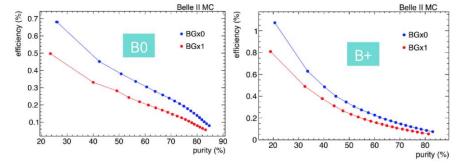

Search for the direct production of low-mass new particles will be highlights in early running period of Belle II

- Dark photon → invisible
 - A single, monochromatic high energy ISR photon. $E_{\gamma}^* = E_{\mathrm{beam}}^* \frac{m_{A'}^2}{4E_{\mathrm{beam}}^*}$
 - Background from e+e-→γγ(γ), e+eγ→γ(γ) due to finite acceptance & imperfect detector
 - Dedicated single photon trigger.
- Anticipated results also for

Axion Like Particle Z' → invisible

sector, parameters will lie along one of these lines. Derived from E. Izaguirre, G. Krnjaic, P. Schuster,

N. Toro, Phys. Rev. Lett. 115, 251301 (2015)


[IHEP 05, 182 (2019)]

Belle II Full Event Interpretation

Belle II has developed a new "Full Event Interpretation" tool

based on fast BDT.

Tag algorithm date	MVA	Efficiency	Purity
Belle v1 (2004)	Cut-based (Vcb)	-	-
Belle v3 (2007)	Cut-based	0.1	0.25
Belle NB (2011)	Neurobayes	0.2	0.25
Belle II FEI (2017)	Fast BoostedDecisionTree	0.5	0.25

+ NEW FEI method based on semileptonic tag
 Fast BDT tag in B → D(*) l v + B → D(*)π l v.

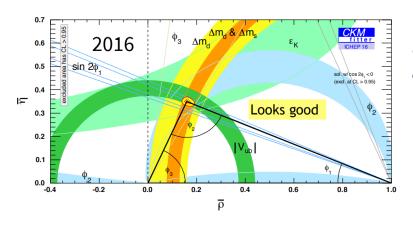
More recent update: 1807.08680

Number of decay modes used in tagging (Belle → Belle II)

B+: 17→29, B⁰: 14→26

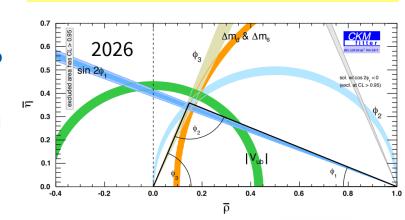
 $D^{+}/D^{*+}/D_{s}^{+}$: 18 \rightarrow 26, D^{0}/D^{*0} : 12 \rightarrow 17

B^+ modes	B^0 modes	D^+, D^{*+}, D_s^+ modes	D^0, D^{*0} modes
$B^+ o \overline{D}{}^0\pi^+$	$B^0 o D^- \pi^+$	$D^+ \rightarrow K^- \pi^+ \pi^+$	$D^0 \rightarrow K^-\pi^+$
$B^+ o \overline{D}{}^0 \pi^+ \pi^0$	$B^0 \rightarrow D^-\pi^+\pi^0$	$D^+ o K^-\pi^+\pi^+\pi^0$	$D^0 o K^-\pi^+\pi^0$
$B^+ ightarrow \overline{D}{}^0\pi^+\pi^0\pi^0$	$B^0 \rightarrow D^-\pi^+\pi^+\pi^-$	$D^+ \rightarrow K^-K^+\pi^+$	$D^0 o K^-\pi^+\pi^+\pi^-$
$B^+ \rightarrow \overline{D}{}^0\pi^+\pi^+\pi^-$	$B^0 \rightarrow D_s^+ D^-$	$D^+ \to K^- K^+ \pi^+ \pi^0$	$D^0 o \pi^- \pi^+$
$B^+ o D_s^+ \overline{D}{}^0$	$B^0 \rightarrow D^{*-}\pi^+$	$D^+ o K_s^0 \pi^+$	$D^0 ightarrow \pi^- \pi^+ \pi^0$
$B^+ o \overline{D}^{*0} \pi^+$	$B^0 \to D^{*-}\pi^+\pi^0$	$D^+ \rightarrow K_s^0 \pi^+ \pi^0$	$D^0 \to K_s^0 \pi^0$
$B^+ o \overline{D}^{*0} \pi^+ \pi^0$	$B^0 \to D^{*-}\pi^+\pi^+\pi^-$		$D^0 \rightarrow K_S \pi^+ \pi^-$ $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
$B^+ o \overline D^{*0} \pi^+ \pi^+ \pi^-$	$B^0 o D^{*-}\pi^+\pi^+\pi^-\pi^0$	$D^+ \to K_s^0 \pi^+ \pi^+ \pi^-$	
$B^+ \to \overline{D}^{*0} \pi^+ \pi^+ \pi^- \pi^0$	$B^0 o D_s^{*+} D^-$	$D^{*+} \rightarrow D^0 \pi^+$	$D^0 o K^0_s \pi^+ \pi^- \pi^0$
$B^+ o D_s^{*+} \overline{D}{}^0$	$B^0 o D_s^+ D^{*-}$	$D^{*+} \rightarrow D^+ \pi^0$	$D^0 o K^-K^+$
$B^+ o D_s^+ \overline D^{*0}$	$B^0 \rightarrow D_s^{*+}D^{*-}$	$D_s^+ \to K^+ K_s^0$	$D^0 o K^-K^+K^0_{\scriptscriptstyle S}$
$B^+ \to \overline{D}{}^0 K^+$	$B^0 \rightarrow J/\psi K_s^0$	$D_s^+ o K^+\pi^+\pi^-$	$D^{*0} o D^0\pi^0$
$B^+ \rightarrow D^- \pi^+ \pi^+$	$B^0 \rightarrow J/\psi K^+\pi^+$	$D_s^+ \rightarrow K^+K^-\pi^+$	$D^{*0} \rightarrow D^0 \gamma$
$B^+ \to J/\psi K^+$	$B^0 \rightarrow J/\psi K_s^0 \pi^+ \pi^-$	$D_s^+ \to K^+ K^- \pi^+ \pi^0$	1000
$B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$		$D_s^+ \to K^+ K_s^0 \pi^+ \pi^-$	
$B^+ \rightarrow J/\psi K^+ \pi^0$		$D_s^+ \to K^- K_s^0 \pi^+ \pi^+$	
$B^+ \rightarrow J/\psi K_s^0 \pi^+$	D0 D= + 0 0	$D_s^+ o K^+ K^- \pi^+ \pi^+ \pi^-$	
$B^+ \to D^- \pi^+ \pi^+ \pi^0$ $B^+ \to \overline{D}{}^0 \pi^+ \pi^+ \pi^- \pi^0$	$B^0 \to D^- \pi^+ \pi^0 \pi^0$ $B^0 \to D^- \pi^+ \pi^+ \pi^- \pi^0$	$D_s^+ \to \pi^+ \pi^+ \pi^-$	
$B^+ \to D^0 \pi^+ \pi^- \pi^- \pi^-$ $B^+ \to \overline{D}{}^0 D^+$	$B^0 \to D^- \pi^+ \pi^- \pi^-$ $B^0 \to \overline{D}{}^0 \pi^+ \pi^-$	$D_s^{*+} \to D_s^+ \pi^0$	
$B^+ \to \overline{D}^0 D^+ K_s^0$	$B^0 \to D^- \pi^+ \pi^-$ $B^0 \to D^- D^0 K^+$	$D_s \to D_s \pi$ $D^+ \to \pi^+ \pi^0$	$D^0 \to K^- \pi^+ \pi^0 \pi^0$
$B^+ \to \overline{D}^*D^+K_s^0$ $B^+ \to \overline{D}^{*0}D^+K_s^0$	$B^0 \rightarrow D^- D^{*0} K^+$	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
$B^+ o \overline{D}{}^0 D^{*+} K_s^0$	$B^0 \rightarrow D^{*-}D^0K^+$	$D^+ \rightarrow \pi^+ \pi^+ \pi^-$	$D^0 \to K^- \pi^+ \pi^+ \pi^- \pi^0$
$B^+ o \overline{D}^{*0} D^{*+} K_s^0$	$B^0 \rightarrow D^{*-}D^{*0}K^+$	$D^{+} \to \pi^{+}\pi^{+}\pi^{-}\pi^{0}$	$D^0 \to \pi^- \pi^+ \pi^+ \pi^-$
$B^+ \to \overline{D}{}^0 D^0 K^+$	$B^0 \rightarrow D^-D^+K_s^0$	$D^+ \rightarrow K^+ K^0_s K^0_s$	$D^0 \to \pi^- \pi^+ \pi^0 \pi^0$
$B^+ \to \overline{D}^{*0} D^0 K^+$	$B^0 \rightarrow D^{*-}D^+K_c^0$	$D^{*+} \rightarrow D^+ \gamma$	$D^0 ightarrow K^-K^+\pi^0$
$B^+ \rightarrow \overline{D}{}^0 D^{*0} K^+$	$B^0 \rightarrow D^-D^{*+}K_s^0$	$D_s^+ \rightarrow K_s^0 \pi^+$	
$B^+ \rightarrow \overline{D}^{*0} D^{*0} K^+$	$B^0 \to D^{*-}D^{*+}K_s^0$	$D_s^+ \rightarrow K_s^0 \pi^+ \pi^0$	
$B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^0 \pi^0$	$B^0 \to D^{*-}\pi^+\pi^0\pi^0$	$D_s^{*+} o D_s^+\pi^0$	
	/		


Below line: not used in Belle NB tag.

CKM fit with Belle II + LHCb

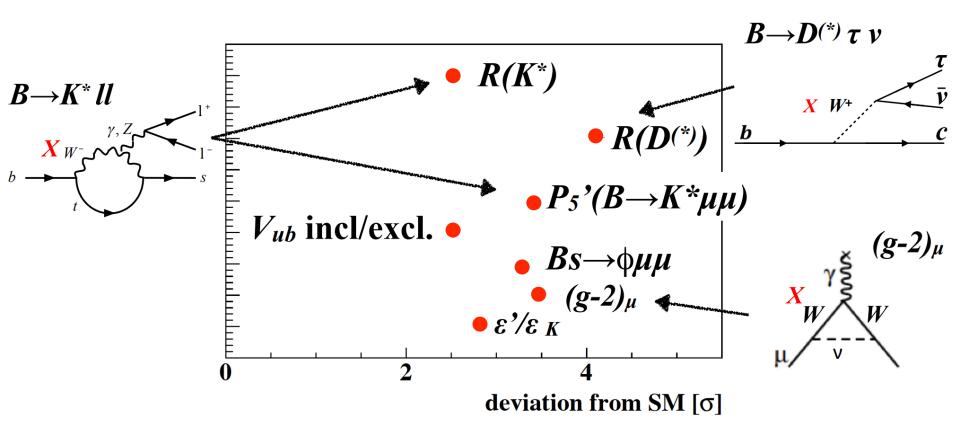
Input	Current WA	SM value Belle II	SM value Belle II+LHCb
A	$0.8227^{+0.0066}_{-0.0136}$	$^{+0.0025}_{-0.0027}$	$^{+0.0024}_{-0.0028}$
λ	$0.22543^{+0.00042}_{-0.00031}$	$0.00036 \\ -0.00030$	0.00035 -0.00030
$ar{ ho}$	$0.1504^{+0.0121}_{-0.0062}$	$^{+0.0054}_{-0.0044}$	$^{+0.0042}_{-0.0040}$ 1808.10
$ar{\eta}$	$0.3540^{+0.00069}_{-0.0076}$	$^{+0.0037}_{-0.00040}$	+0.0036 -0.00037


Precision improvements require improved uncertainties and resolved

tensions, e.g. |Vub| inc.-excl.

Φ₃ ~ 1-1.5° at LHCb & Belle II

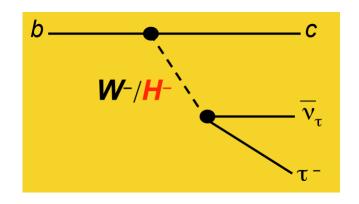
|V_{ub}| ~ 1.2% Belle II

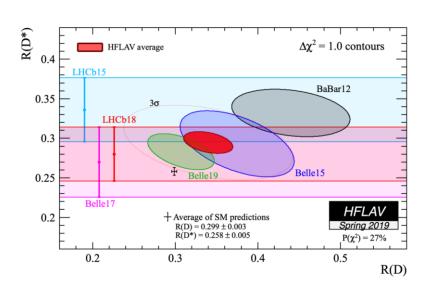


E. Kou, PU et al. arXiv: 1808.10567

Test Lepton Universality

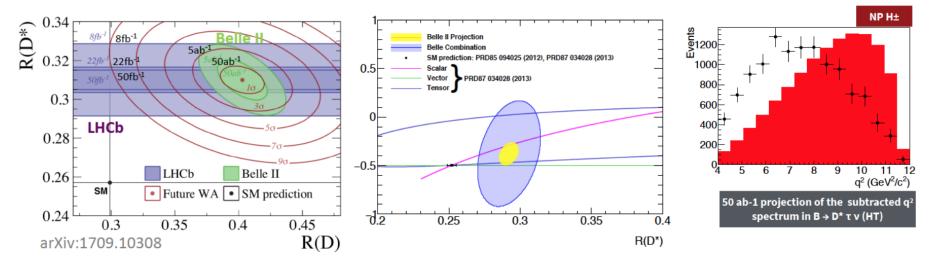
Observed deviation from SM


(as of Spring 2018)


It is important to test lepton universality precisely.

$B \rightarrow D(*)\tau v$

- New Physics may appear at tree level.
- 3rd generation quark (b) and lepton
 (T) involved.
 - large masses → sensitivity to NP
 - Charged Higgs, Leptoquark, ...
- B→D^(*) T V and B→ T V are complementary
- Quantities of interest
 - Lepton Flavor Universality :
 - R(D), R(D*)
 - Polarization: P_{τ} , P_{D^*}
 - q² distribution etc.

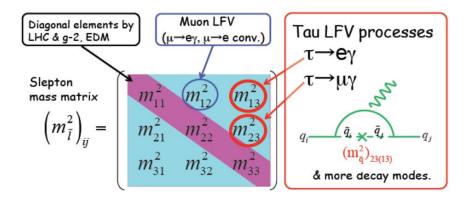

Spring 2019 update

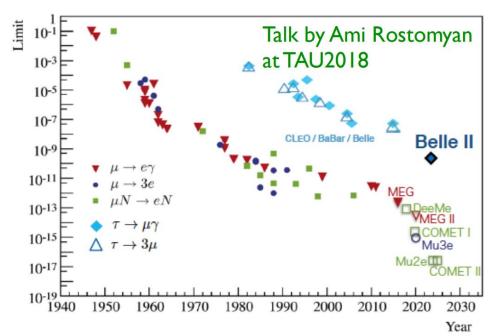
3.1 σ deviation from SM

Belle II sensitivity

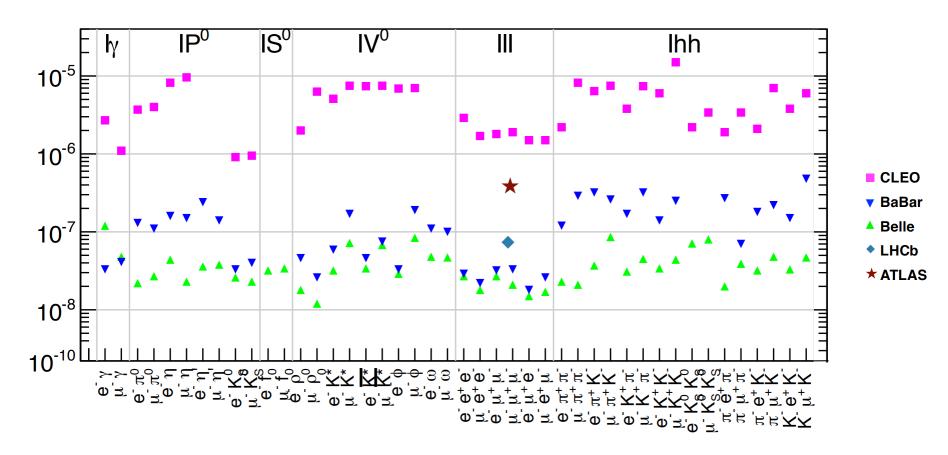
- Lepton universality violation may be established even with 5ab-1 (2020).
- High statistics data will provide more detailed information, such as τ polarization, q² distribution, to discriminate type of NP.

	ΔR(D) [%]			ΔΙ	R(D*) [9	%]
	Stat	Sys	Total	Stat	Sys	Total
Belle 0.7 ab ⁻¹	14	6	16	6	3	7
Belle II 5 ab ⁻¹	5	3	6	2	2	3
Belle II 50 ab ⁻¹	2	3	3	1	2	2

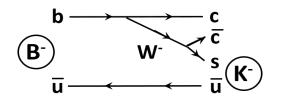

Will soon hit the systematic limit!

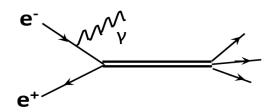

- More observables (distributions)!
 - P(τ), P(D*)
 - dΓ/dq², dΓ/dp_{D(*)}, dΓ/dp_e, ...
- More modes!
 - $B \rightarrow \pi \tau \nu$,
 - $B_S \rightarrow D_S \tau \nu \text{ (at 5S runs)}, ...$

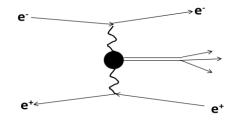
LFV τ Decays


SuperKEKB provides $N(\tau^+\tau^-) \sim N(BB)$

- Lepton flavor violated in the neutrino sector.
- Some NP models predict LFV to be observed in 'near' future experiments.
- T is the heaviest charged lepton, sensitive to NP.
- T LFV complementary to muon programs
 - μ→eγ, eee
 - μ→e conversion



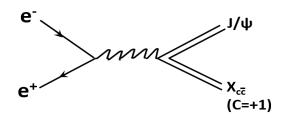

Prospect on LFV τ Decays at Belle II

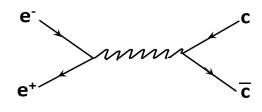


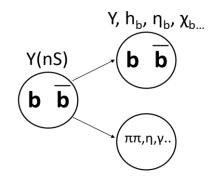
- Belle II will push down the current bounds further by more than an order of magnitude.
- · Trying to increase sensitivity by improved analysis technique.

B-factory = hadron factory!

B meson decay


- · 1+, 0^{-/+}
- · X(3872), Z(4430)....
- Open charm hadrons


Initial state radiation

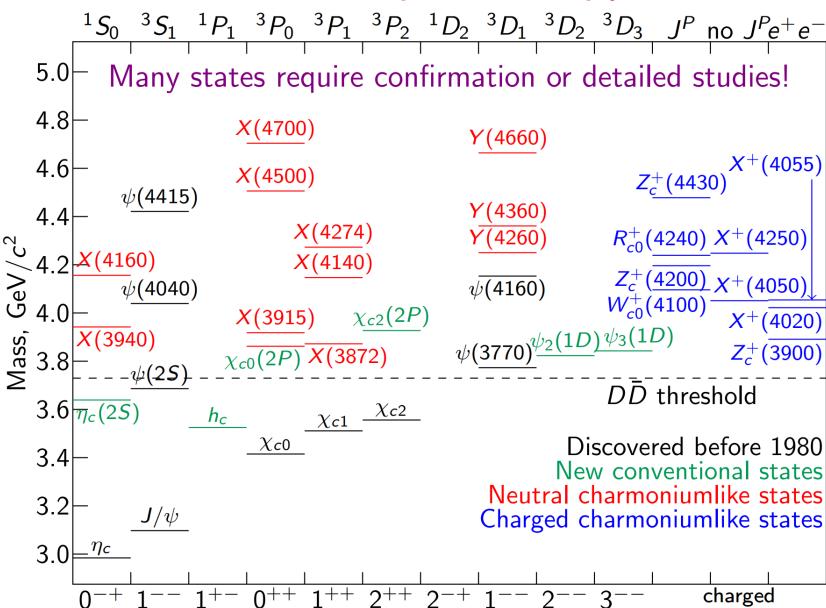

- · JPC=1--
- · Y(4260)

Two photon collision

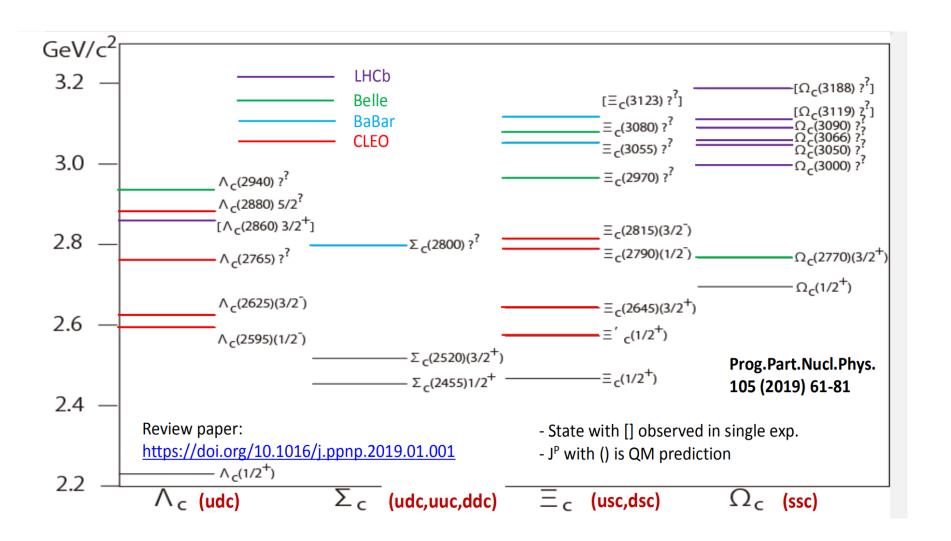
- · J^{PC}=0++, 2++....
- Extract two photon width

Double charmonium

· C-even charmonium

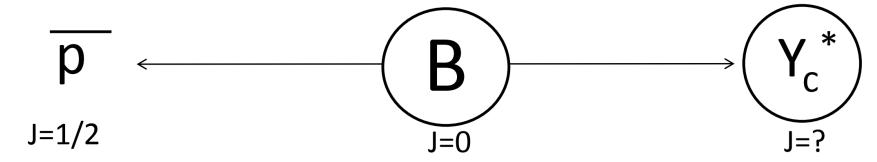

e+**e**-→*cc*

Charm, mesons/baryons

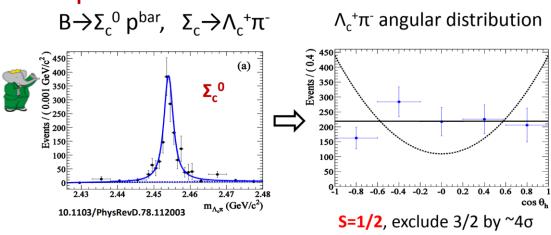

Bottomonium transition

Z_b states

Hadron Spectroscopy



Observed charmed baryons



J^P determination at Belle II

- B-meson two body decay constrains the helicity to be ½
 as B meson has spin zero and proton has spin ½. This largely reduce uncertainty
- Statistics at current B-factory is not good enough for higher excited states.

Example

Higher excited states observed! $B \rightarrow \Xi_c(2930)\Lambda_c$, $\Xi_c(2930) \rightarrow K\Lambda_c$

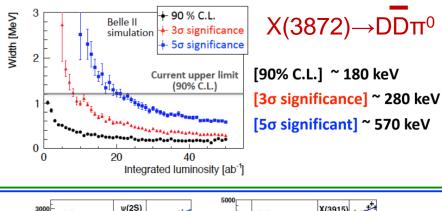
30 Data
Total Fit
Total non E_c(2930) Bkg
Phase Space
Sideband
Generic MC

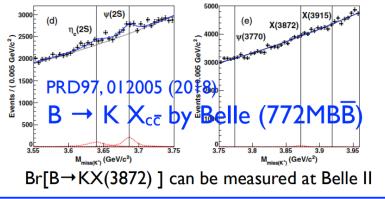
2.8 2.85 2.9 2.95 3

M_{K.A.} (GeV/c²)

Eur. Phys. J. C (2018) 78: 252.

Hadron Spectroscopy at Belle II


- High statistics data at Belle II enables us to do
 - Search for new states near thresholds
 - Amplitude analyses to determine J^{PC}
 - Precise determination of resonance parameters


e.x.: X(3872) width

The current 90% C.L. UL is 1.2 MeV

- Variety of approaches
 - B decays
 - ISR → study XYZ at threshold
 - $> 1 \text{fb}^{-1}/10 \text{MeV}$ at $E_{cm} \sim 4 \text{GeV}$
 - Recoil mass → measure absolute branching fraction
 - b sector by running on $\Upsilon(5S)$...

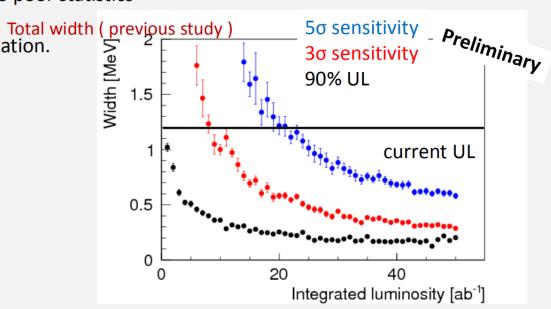
State	Production and Decay	N
X(3872)	$B \rightarrow KX(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 14400$
Y(4260)	ISR, $Y(4260) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 29600$
Z(4430)	$B \rightarrow K^{\mp} Z(4430), Z(4430) \rightarrow J/\psi \pi^{\pm}$	$\simeq 10200$

Also spectroscopies of non exotic quarkonium and baryons.

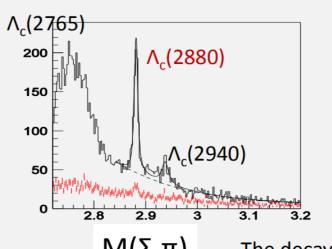
The Belle II Collaboration

- 26 countries.
- Large international collaboration hosted by KEK, Japan

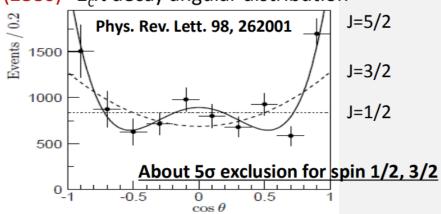
- > Belle II has successfully concluded the phase 2 physics run
- ➤ Phase 3 run started in March 2019: there is much better vertexing, particle ID than in Belle; and full reconstruction on tag side is notably improved over Belle/BaBar.
- ➤ Belle II aims to explore NP in the flavor sector with 50ab⁻¹ with ultimate precision measurement (a few % typically) of heavy flavor decays.
- > Variety of subjects (including low-energy QCD, dark photon, exotic states, mesons/baryons, ...)
- > We expect many exciting results in the coming years !


Belle II physics book (arXiv:1808.10567): https://confluence.desy.de/display/BI/B2TiP+ReportStatus

Total width with $X(3872) \rightarrow DD\pi^0$ decay mode


- In general, the mass resolution is better for smaller mass difference.
- The mass difference is smallest in $D\overline{D}\pi^0$ mode.

Decay	Mass difference (MeV/c²)
$J/\psi\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	~500
$DD\pi^0$	7


- The mass resolution is 680 keV: ~3 times better than $J/\psi \pi^+\pi^-$ mode.
- No width measurement at Belle (1) due to poor statistics
- No bias seen up to O(100 keV) in the simulation.
- The expected 90% UL is 180 keV.

J^P determination at Belle

 $\Lambda_{c}^{+}(2880)$ $\Sigma_c \pi$ decay angular distribution

 $M(\Sigma_c \pi)$

The decay angular distribution for spin 5/2.

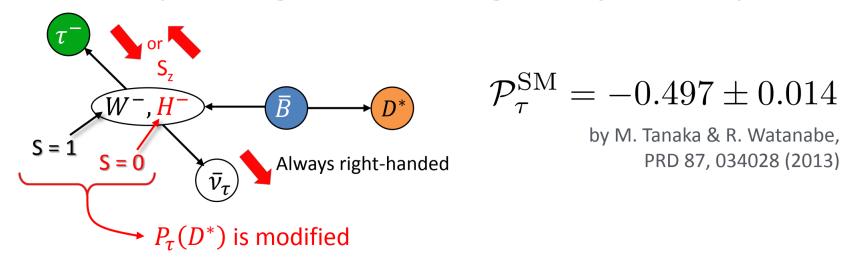
$$W_{5/2} = \frac{3}{8} [\rho_{55} 2(5\cos^4\theta - 2\cos^2\theta + 1) + \rho_{33}(-15\cos^4\theta + 14\cos^2\theta + 1) + \rho_{11}5(1 - \cos^2\theta)^2]$$

- Decay angular distribution depends on helicity fraction (ρ_{ii}). Difficult to predict ρ_{ii} in continuum production.
- If a charm baryon is not polarized (ρ_{ii} have same value), angular distribution becomes flat. \rightarrow It is difficult to distinguish spin 1/2 and no polarization.
- J^P determination is essential.

Λ_c+ in Belle II phase2 data!

Prospect for CKM

- For $|V_{xb}|$, Belle II is able to perform both inclusive and exclusive measurements with B tagging, including
 - detailed studies of exclusive decays to understand the difference, which is presently seen.
- Interplay with theoretical studies is important.

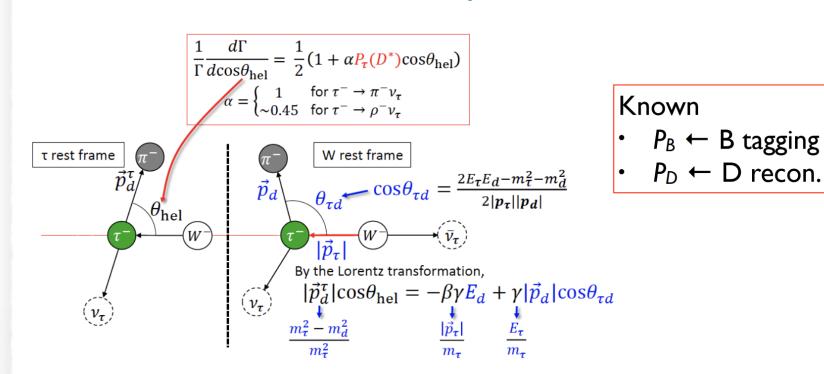

Belle II prospect for |V_{xb}|

1808.10567

% uncertainties	Statistical	Systematic (reducible, irreducible)	Total Exp	Theory Lattice	Total
$ V_{ub} $ exclusive (had. tagged)				projection	ıs
711 fb^{-1}	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

Polarizations in $B \to D^* \tau \nu$

- $R(D^{(*)})$ deviations from SM (by ~3.8 σ as of 2018) motivates further study
- Detailed kinematic information of the final-state particles, e.g. angular observables, can provide a good clue for NP signature (if there is any!)


• In 2017, Belle has reported world-first measurement of P_{τ} in B \rightarrow D* τv

$$\mathcal{P}_{\tau}(D^*) = -0.38 \pm 0.51^{+0.21}_{-0.16}$$

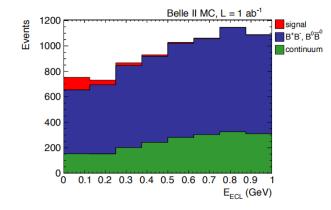
Measurement of T polarization

• Belle II will be able to measure distributions; such as T polarization, q² distribution, to discriminate type of NP.

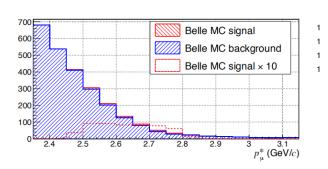
Measurement of T polarization

Solving the equation, $\cos\theta_{\rm hel}$ is obtained!

$B \rightarrow \tau \nu$, I ν at Belle II

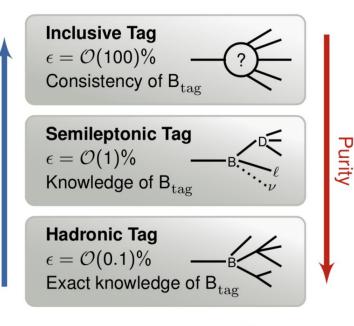

808,10567

$B \rightarrow TV$

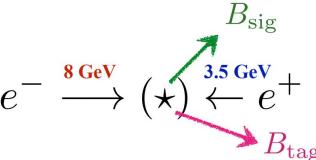

- Exploits high efficiency of the hadronic tag method through the Full Event Interpretation (FEI).
- Selection of photon candidates is important to cope with machine background in Belle II (x20 w.r.t. Belle)
 - Cluster energy, timing, shape (E9/E25)
- Multivariate continuum suppression

Β→μν

- Tagged searches are possible, but efficiency is too low
- Extrapolation from Belle to Belle II
 - Branching fraction error: 7%(stat.)
 at 50ab-1
 - 5σ observation at 6 ab-1

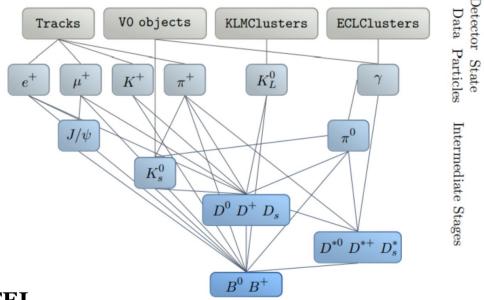


E_{ECL}		$< 1\mathrm{GeV}$	$< 0.25\mathrm{GeV}$
	Background yield [events]	12835	2062
without background	Signal yield [events]	332	238
	Signal efficiency (‰)	3.8	2.7
	Background yield [events]	7420	1348
with background	Signal yield [events]	188	136
	Signal efficiency (‰)	2.2	1.6



Experiment	Upper limit @ 90% C.L.	Comment
Belle [225]	2.7×10^{-6}	Fully reconstructed hadronic tag, 711 fb^{-1}
Belle [226]	1.1×10^{-6}	Untagged analysis, 711 fb^{-1}
BaBar [222]	1.0×10^{-6}	Untagged analysis, $468 \times 10^6 \ B\overline{B}$ pairs

B-tagging and FEI


Efficiency ∈

Exclusive Tagging:

The Full Event Interpretation (FEI)

Keck, T., et al. Comput Softw Big Sci (2019)

FEI

- the most evolved version of B-tagging S/W
- developed for Belle II; used in several Belle studies
 - O(200) decay chains with BDT trained for each
- O(10k) decay chains in 6 stages
- ×3 high MC efficiency than existing Belle algorithm