

Dark Sector searches at Belle II

Giacomo De Pietro

for the Belle II Collaboration

Dark Side of the Universe (DSU) @ Buenos Aires 15 - 19 July 2019

SuperKEKB and Belle II

SuperKEKB: an Intensity Frontier machine

e 7 GeV 2.6A

e⁺ 4GeV 3.6A

Belle II

3

SuperKEKB is a super B-factory located at KEK (Tsukuba, Japan)

It's an asymmetric e⁺e⁻ collider operating mainly at 10.58 GeV (Υ(4S), but possible runs from Υ(2S) to Υ(6S))

SuperKEKB: an Intensity Frontier machine

Belle I

Belle II detector

Cross sections at a B-factory

Physics process	Cross section [nb]	Selection Criteria	Reference	
$\Upsilon(4S)$	1.110 ± 0.008	-	[2]	
$uar{u}(\gamma)$	1.61	-	KKMC	
$d\bar{d}(\gamma)$	0.40	-	KKMC	
$s\bar{s}(\gamma)$	0.38	-	KKMC	
$car{c}(\gamma)$	1.30	-	KKMC	
$e^+e^-(\gamma)$	$300 \pm 3 \text{ (MC stat.)}$	$10^{\circ} < \theta_e^* < 170^{\circ},$	BABAYAGA.NLO	
		$E_e^* > 0.15 \mathrm{GeV}$		
$e^+e^-(\gamma)$	74.4	$p_e > 0.5{\rm GeV}/c~{\rm and}~{\rm e}~{\rm in}$	-	
		ECL		
$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC \ stat.})$	$10^{\circ} < \theta_{\gamma}^* < 170^{\circ},$	BABAYAGA.NLO	
		$E_{\gamma}^* > 0.15 \mathrm{GeV}$		
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma} > 0.5 \mathrm{GeV}$ in ECL	-	
$\mu^+\mu^-(\gamma)$	1.148		KKMC	
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC	-	
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,	-	
		$\geq 1 \ \gamma \ (E_{\gamma} > 0.5 \text{GeV})$ in 1	ECL	
$\tau^+\tau^-(\gamma)$	0.919	-	KKMC	
$ uar u(\gamma)$	0.25×10^{-3}	-	KKMC	E. Kou, P. Urquijo et al.,
$e^+e^-e^+e^-$	$39.7\pm0.1~(\mathrm{MC~stat.})$	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$	AAFH	arXiv:1808.10567
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~(\mathrm{MC~stat.})$	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$	AAFH	

G. De Pietro (Roma Tre)

DSU 2019

First period of data taking: Phase 2

During the Phase 2 run (2018) Belle II had partial VXD detector

Main goals:

Belle T

- accelerator commissioning
 - measure beam background
 - detector commissioning
 - dark sector physics

First collisions: 26th April 2018

Instant luminosity achieved: 5.5.10³³ cm⁻² s⁻¹

G. De Pietro (Roma Tre)

Highlights from Phase 2

DSU 2019

m(μ⁺μ⁻) (GeV/c²)

Goal: integrate up to 50 ab⁻¹ of data

New first collisions (25th March 2019)

Full angular coverage with PXD and SVD installed

 $\mathsf{Vector}\ \mathsf{portal} \to \mathsf{Dark}\ \mathsf{Photon}$

> Vector portal \rightarrow Dark Photon Scalar portal \rightarrow Dark Higgs/Scalars

> Vector portal \rightarrow Dark Photon Scalar portal \rightarrow Dark Higgs/Scalars Pseudoscalar portal \rightarrow Axion-Like Particles

 $\begin{array}{l} \mbox{Vector portal} \rightarrow \mbox{Dark Photon} \\ \mbox{Scalar portal} \rightarrow \mbox{Dark Higgs/Scalars} \\ \mbox{Pseudoscalar portal} \rightarrow \mbox{Axion-Like Particles} \\ \mbox{Neutrino portal} \rightarrow \mbox{Sterile Neutrinos} \end{array}$

> Vector portal \rightarrow Dark Photon Scalar portal \rightarrow Dark Higgs/Scalars Pseudoscalar portal \rightarrow Axion-Like Particles Neutrino portal \rightarrow Sterile Neutrinos

G. De Pietro (Roma Tre)

DSU 2019

Competitive studies with low statistics!

Dark Photons

G. De Pietro (Roma Tre)

$\mathcal{Z}_{\text{Belle II}}$ Dark Photon: invisible decay (signal)

Discriminant variables:

 $\mathsf{E}_{\mathsf{CMS}}$ vs. polar angle of "single photon"

Dark Photon: invisible decay (background)

G. De Pietro (Roma Tre)

G. De Pietro (Roma Tre)

Look for a bump in the e⁺e⁻ or $\mu^+\mu^-$ invariant mass over a (large) QED background

Belle II sensitivity is obtained by scaling the BaBar measurement: - expected better invariant mass resolution - expected better triggers

G. De Pietro (Roma Tre)

Axion-like Particles

Axion-Like Particles

Axion-Like Particles (ALPs) are pseudo-scalars and couple to bosons.
Unlike QCD Axions, ALPs have no relation between mass and coupling.

I will focus on the **coupling to photons**:

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad \tau_a \sim 1/g_{a\gamma\gamma}^2 m_a^3$$

Belle II will study the **ALP-strahlung** case (low sensitivity to photon fusion production)

Axion-Like Particles (signal)

Axion-Like Particles (sensitivity)

We expect to improve the current limits for $m_a > 100 \text{ MeV}$ 10^{-2} 10^{-2} 10^{-2} 10^{-3} 10^{-4} 10^{-5}

-1 10 LEP $ee \rightarrow \gamma\gamma$ 10⁻² Belle II 0.472 fb⁻¹ Belle II 135 fb⁻¹ electron br Pp 10⁻⁶ <u>0</u> SN1987A 10⁻⁷ $g_{a\gamma Z} = 0$ 10⁻⁸ 10⁻³ 10⁻² 10^{-1} 10⁰ 10 10 $m_a [\text{GeV/c}^2]$

No systematics.

Only (dominant) $ee \rightarrow \gamma\gamma\gamma$ background included 135fb -1 assumes no $\gamma\gamma$ trigger veto in the barrel

G. De Pietro (Roma Tre)

Axion-Like Particles (sensitivity)

We expect to improve the current limits for $m_a > 100 \text{ MeV}$

No systematics.

Only (dominant) $ee \rightarrow yyy$ background included 135fb -1 assumes no yy trigger veto in the barrel

G. De Pietro (Roma Tre)

Belle II: ALPs below 200 MeV?

- For ALP masses below ~200 MeV, the decay photons are reconstructed as one ECL cluster even in offline analysis. Currently under study:
 - Untagged (electrons not seen) ALP fusion production has a much higher cross section and produces ALPs with less boost (difficult to trigger).
 - Shower shapes for merged cluster are different, MVA based reconstruction has better separation power (but events have to pass L1 trigger).
 - Pair conversion of one decay photon costs statistics, but yields a distinctive four particle final state.

Pro: resolved clustersCon: very low energetic photons

Other exotic searches

Muonic Dark Force: invisible decay

→ inv.)] [fb It's possible to consider a gauge boson Z' $\sigma[e^+e^- \rightarrow \mu^+\mu^- Z'(\rightarrow invisible)]$ [fb], g'=0.01 that couples only to 2nd and 3rd $\sigma[e^+e^- \rightarrow \mu^+\mu^- Z']$ [fb], BF[Z' $\rightarrow \chi \overline{\chi}$]=1, g'=0.01 10² 10 leptonic generation $(L_{\mu} - L_{\tau} \text{ model})$ $\mathcal{L} = -g'\bar{\mu}\gamma^{\mu}Z'_{\mu}\mu + g'\bar{\tau}\gamma^{\mu}Z'_{\mu}\tau$ **Cross** section $-g'\bar{\nu}_{\mu,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\mu,\mathrm{L}}+g'\bar{\nu}_{\tau,\mathrm{L}}\gamma^{\mu}Z'_{\mu}\nu_{\tau,\mathrm{L}}$ computed with MadGraph Shuve et al. (2014), arXiv:1403.2727 10-4 10^{-5} Ľ 10⁻⁶ M_{7} [GeV/c²] Γ, ν, χ **Branching ratios: Z**' $M_{z} < 2M_{u} \rightarrow \Gamma(Z' \rightarrow inv.) = 1$ $l^+, \overline{\nu}, \overline{\chi}$ $2 M_{\mu} < M_{z}, < 2 M_{\tau} \rightarrow \Gamma(Z' \rightarrow inv.) \sim 1/2$ $M_{z} > 2M_{\tau} \rightarrow \Gamma(Z' \rightarrow inv.) \sim 1/3$ μ^+

G. De Pietro (Roma Tre)

Muonic Dark Force: invisible decay

Invisible decay: reconstruct the recoil mass w.r.t. the two opposite-charged muons and look for a peak in the mass spectrum

Additional request:

 \sim nothing in the rest of the event

Considered the main backgrounds: $e^+ e^- \rightarrow \mu^+ \mu^$ $e^+ e^- \rightarrow \tau^+ \tau^$ $e^+ e^- \rightarrow e^+ e^- \mu^+ \mu^-$

Trigger + tracking + PID + mass resolution systematics already included here (10%)Possible additional systematics on background estimate not included (0-30%)

G. De Pietro (Roma Tre)

Muonic Dark Force: invisible decay

Trigger + tracking + PID + mass resolution systematics already included here (10%)Possible additional systematics on background estimate not included (0-30%)

G. De Pietro (Roma Tre)

Dark Sector and LFV

We are also considering a different model, in which a Z' boson couples to all leptons and we allow for **Lepton Flavour Violation**

See I. Galon et al.: *arXiv:1610.08060, arXiv:1701.08767*

Complementarity with searches for:

- low mass Z'
- charged LFV

Low background from SM processes!

G. De Pietro (Roma Tre)

G. De Pietro (Roma Tre)

Magnetic monopoles

DSU 2019

Interesting predictions (arXiv:1707.05295) for monopoles with $g \sim 1e$ and m = 4.5 GeV...

... but not-relativistic at Belle II:

- \rightarrow no $1/\beta^2$ term in dE/dx for magnetic charges \rightarrow few hits in the CDC
 - \rightarrow needed a dedicated tracking

Complementary search using our PXD: K. Dort et al., arXiv:1906.04942

G. De Pietro (Roma Tre)

Minimal magnetic charge from Dirac quantization: $g_{D} = 68.5e$

Lower magnetic charge not ruled out

(and not covered at \sim GeV scale)

Magnetic monopoles

Other dark sector and exotic searches

Visible Dark Photon decays also $\tau^+ \tau^-$ final state!

Off-shell Dark Photon decays

Long-lived neutral particle decays

Dark Scalar:

 $e^+ e^- \rightarrow \tau^+ \tau^- S \ ; \ S \rightarrow l^+ l^-$

Invisible $\Upsilon(1S)$ decays via:
$$\begin{split} \Upsilon(3S) &\to \Upsilon(1S) \ \pi^+\pi^- \\ \Upsilon(2S) &\to \Upsilon(1S) \ \pi^+\pi^- \end{split}$$

Muonic Dark Force: $e^+e^- \rightarrow \mu^+\mu^- Z^2$; $Z^2 \rightarrow \mu^+\mu^-$

... and many others!

More details in The Belle II Physics Book arXiv:1808.10567

G. De Pietro (Roma Tre)

✓ Belle II at the SuperKEKB facility started operations in 2018, collecting 0.5 fb⁻¹ of collisions data in 2018 and other 6.5 fb⁻¹ in 2019

- ✓ Belle II at the SuperKEKB facility started operations in 2018, collecting 0.5 fb⁻¹ of collisions data in 2018 and other 6.5 fb⁻¹ in 2019
- Dedicated triggers for a rich program of Dark Sector and exotic searches at Belle II

- ✓ Belle II at the SuperKEKB facility started operations in 2018, collecting 0.5 fb⁻¹ of collisions data in 2018 and other 6.5 fb⁻¹ in 2019
- Dedicated triggers for a rich program of Dark Sector and exotic searches at Belle II
- Already a small dataset will give world leading sensitivity for several Dark Sector searches

- ✓ Belle II at the SuperKEKB facility started operations in 2018, collecting 0.5 fb⁻¹ of collisions data in 2018 and other 6.5 fb⁻¹ in 2019
- Dedicated triggers for a rich program of Dark Sector and exotic searches at Belle II
- Already a small dataset will give world leading sensitivity for several Dark Sector searches
- ✓ First results (ALPs, Z', etc.) are currently under internal review and they will be published soon

Thank you for your attention

Backup slides

Parameter	KEKB Design	KEKB Achieved	SuperKEKB Design
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
$\boldsymbol{\beta}_{y}^{*}$ (mm)	10/10	5.9/5.9	0.27/0.30
β_x^* (mm)	330/330	1200/1200	32/25
\mathcal{E}_{x} (nm)	18/18	18/24	3.2/5.3
$\frac{\varepsilon_y}{\varepsilon_x}$ (%)	1	0.85/0.64	0.27/0.24
$\sigma_y(\mu m)$	1.9	0.94	²⁰ → 0.048/0.062
ξ_y	0.052	0.129/0.090	0.09/0.081
σ_{z} (mm)	4	6/7	6/5
I_{beam} (A)	2.6/1.1	1.64/1.19 —	x2 3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity $(10^{34} cm^{-2} s^{-1})$	1.0	2.11	80

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{\pm}\xi_{y\pm}}{\beta_y^*} \right) \left(\frac{R_L}{R_{\xi_{y\pm}}} \right)$$

G. De Pietro (Roma Tre)

Electromagnetic Calorimeter (ECL)

Belle T

Material budget in front of ECL:

Beam background

Effects from beam background:

- \rightarrow degrades calorimeter resolution.
- \rightarrow radiation damage.
- \rightarrow pile-up and event size.
- \rightarrow physics background

G. De Pietro (Roma Tre)

BEAST: dedicated systems for continuous beam background measurement and monitoring!

60

 $\theta_{\rm ID}$

Dark Photon: muonic decay @ LHCb

Dark Photon: hadronic decay

Very interesting final state...

- searched only by KLOE

(A' $\rightarrow \pi^+\pi^-$)

- covered only the region $\rm m_{{}_{A}^{\prime}}<1~GeV$
- ... but quite challenging!
 - due to large available phase space + hadronization, many final states must be considered
 - background from hadronic events

G. De Pietro (Roma Tre)

DSU 2019

Axion-like Particles: invisible decay

G. De Pietro (Roma Tre)

Belle II

Izaguirre et al. (2017), arXiv:1611.09355

Belle II