

Approved plots: Early Phase III Data performance through reconstruction of untagged $B \rightarrow D^* l \nu_l$ decays with 0.41 fb⁻¹ Data

M. Nayak^{*} and A. Soffer[†]

Tel Aviv University, Tel Aviv, Israel

^{*}Electronic address: minakshi@tauex.tau.ac.il †Electronic address: asoffer@tauex.tau.ac.il

FIG. 1: The Maximum likelihood fit to $\cos \theta_{BY} = \frac{2E_B^* E_Y^* - M_B^2 - m_Y^2}{2p_B^* p_Y^*}$ and $m_{\text{miss}}^2 = \left(\frac{P_{ee}}{2} - P_Y^*\right)^2$ distributions of untagged $\bar{B}^0 \to D^{*+} l^- \bar{\nu}_l$ candidates using 0.41 fb⁻¹ of collision Data, where E_V^*, p_V^* , P_{Y}^{*} , and m_{Y} are the center-of-mass (CM) energy, three momentum, four momentum and invariant mass of the D^*l system, P_{ee} is the four momentum of the beam particles, M_B is the nominal B mass, and E_B^* , p_B^* are the CM energy and momentum of the B, inferred from the CM machine energy. For correctly reconstructed B candidates, ignoring detector resolution effects and the spread in machine energy, θ_{BY} is the CM angle between the B and D^*l momenta. Here Data are shown with points with error bars with different components shown online for $\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e$ (top) and $\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu}$ (bottom) channels. D^0 candidates are reconstructed from $K^- \pi^+$ pairs, selected without particle identification requirements, within the invariant mass range 1.85 GeV/ $c^2 < m_{K\pi} <$ 1.88 GeV/ c^2 . D^{*+} candidates are reconstructed from a D^0 candidate and a π^+ candidate track, with the invariant-mass difference between D^{*+} and D^0 candidates in the range 0.144 GeV/ c^2 < $\Delta m < 0.148$ GeV/ c^2 . The CM momentum of the D^{*+} candidate is required to satisfy $p_{D^{*+}}^* < c^2$ 2.5 GeV/c. Continuum $e^+e^- \rightarrow q\bar{q}$ background is suppressed with the Fox-Wolfram moment ratio $R^2 < 0.25$. The CM momentum of the lepton candidate is required to be in the range 1.2 GeV/ $c < p_l^* < 2.4$ GeV/c. Electron and muon candidates are selected with requirements on the combined variables, electron ID > 0.85 and muon ID > 0.9 respectively. The internal document reference is BELLE2-NOTE-PH-2019-019.