Semileptonic Results from 2018 Belle II Commissioning Data

Lu Cao for the Belle II Collaboration

21 May 2019 @ MIAPP, Munich

Belle II Experiment

- •40 times higher instantaneous luminosity from KEKB to SuperKEKB: $8 \times 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Detector upgraded for higher particle multiplicity and tracking capacity
- Physics data taking with full detector started in March

SuperKEKB/Belle II Schedule

- Phase 1: Beam operation run (2016) <
- Phase 2: Commissioning run (2018)

 - With partial vertex detector
 - Collected int. $L = 0.5 \text{ fb}^{-1}$

Phase 3: Physics run

- On-going data taking
- 9 months/year operation
- Will reach "flavour milestone" in two year

SuperKEKB/Belle II Schedule

- Phase 1: Beam operation run (2016) <
- Phase 2: Commissioning run (2018)

 - With partial vertex detector
 - Collected int. $L = 0.5 \text{ fb}^{-1}$

Phase 3: Physics run

 \Leftarrow

- On-going data taking
- 9 months/year operation
- Will reach "flavour milestone" in two year

Event Reconstruction with Tagging Techniques

Untagged

- Loose constraints on signal
- Very large statistics, but also very large background
- Efficiency $\epsilon \approx \mathcal{O}(100\%)$

Semileptonic tag

- Mid-range reconstruction efficiency $\epsilon \approx O(1\%)$
- Due to multiple neutrinos, less information about B_{tag}

Hadronic tag

- Cleaner sample
- Knowledge of p(B_{sig})
- Low tag-side efficiency $\epsilon \approx \mathcal{O}(0.1\%)$

Improved Tagging Algorithms

- > 5000 B decays modes reconstructed
- O(200) particle decay channels for training
- Output is candidate-wise **signal probability**

Tagging	arepsilon on MC	
FR^1	FEI Belle	FEI Belle II
0.28%	0.76%	0.66%
0.67%	1.80%	1.45%
0.18%	0.46%	0.38%
0.63%	2.04%	1.94%
	Tagging FR ¹ 0.28% 0.67% 0.18% 0.63%	Tagging ε on MC FR ¹ FEI Belle 0.28% 0.76% 0.67% 1.80% 0.18% 0.46% 0.63% 2.04%

¹Belle Full Reconstruction algorithm.

1807.08680

Hadronic FEI Performance

 m_{bc} [GeV/c²]

Beam-constrained mass: $M_{\rm bc} = \sqrt{(\sqrt{s}/2)^2 - \vec{p}_{B_{\rm tag}}^2}$

Hadronic FEI Performance

	Candidates	Efficiency	Purity
	FEI Signal P	robability ${\cal P}$	> 0.01
Charged Candidates Neutral Candidates	937±126 394± 59	0.17% 0.09%	24% 25%
	FEI Signal F	Probability ${\cal P}$	> 0.2
Charged Candidates Neutral Candidates	389± 43 182± 24	0.07% 0.03%	63% 73%

Efficiency =
$$\frac{N_{\rm B}^{correct}}{N_{\rm Y(4S)}^{total}}$$

Purity =
$$\frac{N_{\rm B}^{correct}}{N_{\rm B}^{all}}$$

Analysis of Inclusive $B \rightarrow Xe\nu$

- Commissioning run data 0.4915 fb⁻¹
- Fox-Wolfram moment R2 < 0.4 to suppress continuum background
- Veto leptons from J/ψ decay

Analysis of Inclusive $B \rightarrow Xe\nu$

- Observed 42191 ± 304 (expected 40209 ± 200) signal events in 0.6 < p(cms) < 2.4 GeV Agreement of data and MC for momenta above 1 GeV
- No statements on $|V_{ub}|$, $|V_{cb}|$ or branching fractions (due to the lack of off-resonance data) and unknown tracking efficiencies etc.)

Analysis of $\bar{B}^0 \to D^{*+} e^- \bar{\nu}_o$

- Commissioning run data 366 pb⁻¹
- Analysed decay chain: $B \to D^* e \nu, D^* \to D^0 (\to K \pi) \pi_{slow}$
- Slow pions p(cms) < 0.4 GeV/c
- Reconstructed mass of D in (1.85, 1.88) GeV/c²
- Mass difference between D* and D in (0.144, 0.148) GeV/c²
- Continuum suppressed by R2 < 0.25
- Eventually measure $\cos \theta_{BY} = \frac{2E_B^* E_Y^* \Lambda}{2p_P^*}$ \bullet

-PB

$$\frac{M_B^2 - m_Y^2}{p_Y^*}$$
, Y - visible final system (*D**, *e*)

Analysis of $\bar{B}^0 \to D^{*+} e^- \bar{\nu}_{\rho}$

- Observed 22 signal events in total after all selection
- 15 events found in $-1 < \cos \theta_{BY} < 1$
- Expected 13 events

 $\cos\theta_{\rm BY}$

Early Physics Run Results

Looking for forward to early Physics run results (later summer):

- Hadronic and semileptonic FEI performances study and calibration
- Untagged inclusive $B \rightarrow X \ell \nu$ endpoint measurement
- Hadronic and/or semileptonic tagged inclusive $B \to X \ell \nu$
- Untagged $B \to \pi \ell \nu$ and $B \to \rho \ell \nu$
- Hadronic tagged and untagged $B \rightarrow D^* \ell \nu$

and more...

...coming soon

Prospects of Belle II

Observables	Belle	Bel	le II
	(2017)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\text{ex.}} \pm 3.0\%_{\text{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91 \cdot (1 \pm 24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D \tau \nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

Summary of Vub Projections

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
711 fb^{-1}	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8
$ V_{ub} B \to \tau \nu \text{ (had. tagged)}$					
711 fb^{-1}	18.0	(7.1, 2.2)	19.5	2.5	19.6
5 ab^{-1}	6.5	(2.7, 2.2)	7.3	1.5	7.5
50 ab^{-1}	2.1	(0.8, 2.2)	3.1	1.0	3.2
$ V_{ub} B \to \tau \nu \text{ (SL tagged)}$					
711 fb^{-1}	11.3	(10.4, 1.9)	15.4	2.5	15.6
5 ab^{-1}	4.2	(4.4, 1.9)	6.1	1.5	6.3
50 ab^{-1}	1.3	(2.3, 1.9)	2.6	1.0	2.8

Belle II Physics Book

V_{ub} uncertainty @ Belle II exclusive ~1.5% inclusive ~ 4% leptonic ~ 3%

$B \rightarrow D^{(*)} \ell_{\mathcal{V}} \ (\ell = \tau, e, \mu) @ Belle || MC$

- R(D) and R(D*) provides a good test for LFV and NP (uncertainties on FF, |V_{cb}| cancelled out)
- Polarisations of τ and D* also sensitive to NP
- Other useful observables: precise differential measurements in q² and helicity angles

$$R_{D^{(*)}} = \frac{\operatorname{Br}\left(B \to D^{(*)}\tau\nu_{\tau}\right)}{\operatorname{Br}\left(B \to D^{(*)}\ell\nu_{\ell}\right)} \ (\ell = e^{-\epsilon})$$

$$P_{\tau} \left(D^{(*)} \right) = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}$$
$$P_{D^{*}} = \frac{\Gamma_{L}}{\Gamma_{L} + \Gamma_{T}}$$

 e,μ

$B \rightarrow D^{(*)} \ell_{\mathcal{V}} \ (\ell = \tau, e, \mu) @ Belle || MC$

- Had/SL/untagged analyses
- Leptonic τ decay chosen for cleaner background
- Dominant background is $B \rightarrow D^{**} \ell \nu$

Belle II Phy

_	_	
<u>vsics</u>	<u>Book</u>	
0		

Golden Channels @ Belle II

Flavour Milestone (5-10 ab⁻¹)

Process	Observable	Theory	Sys. limit (Discovery) [ab ⁻¹]	vs LHCb	vs Belle	Anomaly	New Physics
$B \to \pi l \nu$	$ V_{ub} $	***	10-20	$\star\star\star$	***	**	\star
$B \to X_u l \nu$	$ V_{ub} $	**	2-10	$\star \star \star$	**	***	\star
$B \to \tau \nu$	${\mathcal B}$	***	>50 (2)	***	***	*	$\star \star \star$
$B \to \mu \nu$	\mathcal{B}	***	>50 (5)	***	***	*	$\star \star \star$
$B \to D^{(*)} l \nu$	$ V_{cb} $	***	1-10	***	**	**	\star
$B \to X_c l \nu$	$ V_{cb} $	***	1-5	***	**	**	**
$B o D^{(*)} au u$	$R(D^{(*)})$	***	5-10	**	***	***	***
$B o D^{(*)} \tau \nu$	$P_{ au}$	***	15-20	***	***	**	$\star \star \star$
$B \to D^{**} l \nu$	${\mathcal B}$	*	_	**	***	**	_
$B \to l \nu \gamma$	λ_B	**	_	***	***	*	**
$B \to K^{(*)} \nu \nu$	\mathcal{B}, F_L	***	>50	***	***	*	**

Belle II Phys

see also:

Flavor Physics at Belle II by Francesco Tenchini

<u>sics</u>	<u>Book</u>

- Belle II has successfully finished commissioning run and started physics run
- Improved tagging algorithm FEI successfully applied on data
- Successful observation on $B \to X e \nu$ and rediscovery of $B \to D^* e \nu$

- Long-term prospects are promising
- Early physics run results can be expected in later summer and much more on the way...

Back up

$\bar{B}^0 ightarrow \pi^+ l^- \nu$ @Be	elle		
Source	Error (Limit) [%]		
	Tagged [%]	Untagged	
Tracking efficiency	0.4	2.0	
Pion identification	_	1.3	
Lepton identification	1.0	2.4	
Kaon veto	0.9	_	
Continuum description	1.0	1.8	
Tag calibration and $N_{B\overline{B}}$	4.5 (2.0)	2.0 (1.0)	
$X_u \ell \nu$ cross-feed	0.9	0.5 (0.5)	
$X_c \ell \nu$ background	_	0.2 (0.2)	
Form factor shapes	1.1	1.0(1.0)	
Form factor background	_	0.4 (0.4)	
Total	5.0	4.5	
(reducible, irreducible)	(4.6, 2.0)	(4.2, 1.6)	

Source	Error on \mathcal{B} (irre-
	ducible limit)
$\mathcal{B}(D^{(*)}\ell u)$	1.2(0.6)
Form factors $(D^{(*)}\ell\nu)$	1.2 (0.6)
Form factors & $\mathcal{B}(D^{(**)}\ell\nu)$	0.2
$B \to X_u \ell \nu(\mathrm{SF})$	3.6(1.8)
$B \to X_u \ell \nu (g \to s\bar{s})$	1.5
$\mathcal{B}(B \to \pi/\rho/\omega\ell\nu)$	2.3
$\mathcal{B}(B \to \eta^{(\prime)} \ell \nu)$	3.2
$\mathcal{B}(B \to X_u \ell \nu)$ unmeasured/fragmentation	2.9(1.5)
Continuum & Combinatorial	1.8
Secondaries, Fakes & Fit	1.0
PID& Reconstruction	3.1
BDT/Normalisation	3.1 (2.0)
Total	8.1
(Total reducible)	7.4

