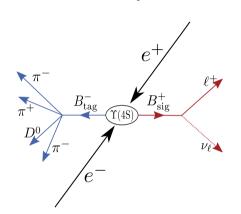
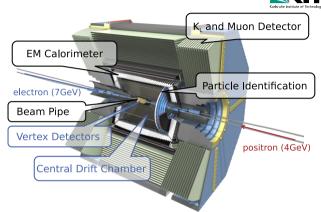


Semileptonic and Leptonic B Decay Results from early Belle II Data

FPCP 2019


Markus Prim on behalf of the Belle II Collaboration | 8th May 2019

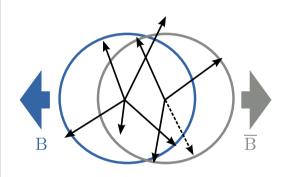


The Belle II Experiment

Belle II Recorded data on the $\Upsilon(4S)$ Resonance:

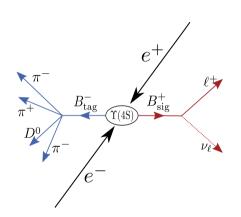
Commissioning Run 2018: $\mathcal{L} pprox 0.5\,\mathrm{fb}^{-1}$

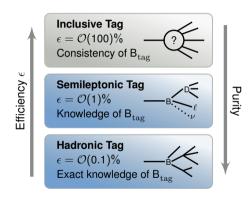
Physics Run 2019: $\mathcal{L} >$ 0.1 fb^{-1}


Event Topology at Belle II

 ↑ (4S) Event

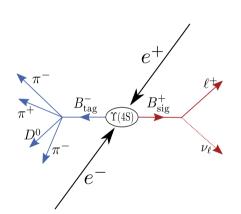
Non-Resonant Event

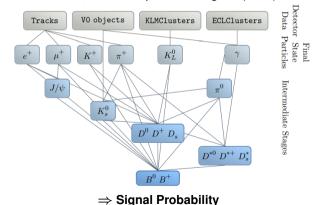

Isotropic Momentum Distribution


Back-To-Back Momentum Distribution

Discrimination by a Ratio of Fox-Wolfram Moments R2.

B-Tagging at Belle II

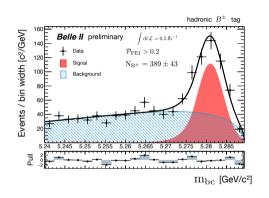


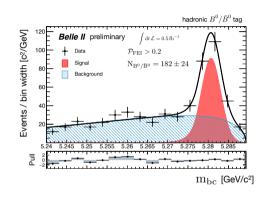

B-Tagging at Belle II

Exclusive Tagging: The Full Event Interpretation (FEI)

Keck, T., et al. Comput Softw Big Sci (2019)

FEI Performance


FEI Performance: Strategy



- The performance analysis used
 - the commissioning run data sample of $0.5 \, \mathrm{fb}^{-1}$.
 - only hadronically reconstructed tag-side B mesons.
- Suppress continuum background using R2.
- lacksquare Retrieve number of B candidates by fitting $m_{
 m bc} = \sqrt{s/4 \left|ec{p}_{
 m B}^*_{
 m tag}
 ight|^2}$.
- Determine tag-side efficiency and purity:
 - Efficiency: $N_{\rm B}^{\rm correct}/N_{\Upsilon(4S)}^{\rm total}$
 - Purity: N_B^{correct}/N_B^{all}

FEI Performance: Results I

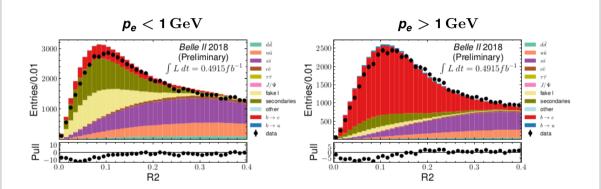
FEI Signal Probability $\mathcal{P}>$ 0.2.

FEI Performance: Results II

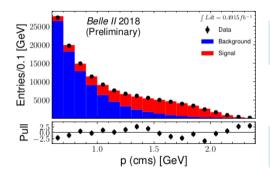
	Candidates	Efficiency	Purity
	FEI Signal Probability $\mathcal{P}>0.01$		
Charged Candidates Neutral Candidates	937±126 394± 59	0.17% 0.09%	24% 25%
	FEI Signal Probability $\mathcal{P}>$ 0.2		
Charged Candidates Neutral Candidates	389± 43 182± 24	0.07% 0.03%	63% 73%

The FEI was successfully deployed on the first Belle II data.

Analysis of Inclusive Semileptonic B ightarrow Xe u Decays


$\mathsf{B} \to \mathsf{X}\mathsf{e}\nu$: Strategy

- The analysis used
 - the commissioning run data sample of $0.5 \, \mathrm{fb}^{-1}$.
 - lepton identification via $E_{\rm ECL}/p_{\rm tracking}$.
 - the electron momentum spectrum.
- Suppress continuum background using R2.
- \blacksquare Veto J/ ψ candidates.


$B \rightarrow Xe\nu$: Results I

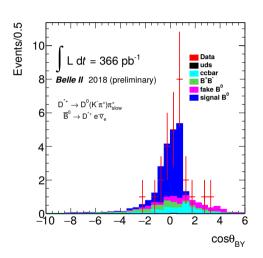
$\mathsf{B} \to \mathsf{Xe}\nu$: Results II

- lacktriangle We observe 42191 \pm 304 signal events.
- \blacksquare We expected 40209 \pm 200 signal events.

Successful observation!

 No statements about |V_{cb}|, |V_{ub}| or branching fractions possible, yet.

Analysis of Exclusive Semileptonic $B \to D^*e\nu$ Decays


Semileptonic B ightarrow D* $^*\mathrm{e} u$ Decays: Strategy

- The rediscovery used
 - lacksquare a data sample of 366 pb^{-1} from the commissioning run.
 - the decay channel B \to D*e ν with D* \to D⁰(\to K π) π_{slow} .
 - lepton identification via $E_{\text{ECL}}/p_{\text{tracking}}$.
- Suppress continuum background using R2.
- \blacksquare Use the variable $\cos\Theta_{\rm BY}=\frac{2E_B^*E_Y^*-M_B^2-m_Y^2}{2p_B^*p_Y^*}$.
- Correctly reconstructed candidates peak in $\cos \Theta_{BY} \in [-1, 1]$.

Semileptonic B ightarrow D* $^*\mathrm{e} u$ Decays: Results

- After final selection, we observe 22 events.
- 15 of these events are in the signal region $-1 < \cos \Theta_{\rm BY} < 1$.
- 13 events are expected to be signal.

Successful Search!

Summary & Outlook I

- First looks into data from the commissioning run have been successful:
 - Successful FEI application.
 - Observation for B \rightarrow $Xe\nu$ decays.
 - Evidence for B \rightarrow D*e ν decays.
- With the upcoming physics run data we will have a look at:
 - Untagged B $o X_{\sf u,c} \ell \nu$ decays.
 - Untagged B $\rightarrow \pi \ell \nu$ and B $\rightarrow \rho \ell \nu$ decays.
 - FEI performance studies and calibration.
 - Tagged (hadronic and semileptonic) B $\rightarrow X\ell\nu$ decays.
 - Tagged (hadronic) B \rightarrow D^(*) $\ell\nu$ decays.
 - And much more!

Summary & Outlook II

• Long term prospect $R(D^{(*)})$:

Summary & Outlook III

■ Long term prospect |V_{ub}|:

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)	Total Line	1110013	
$ V_{ub} $ exclusive (had. tagged)		(
711 fb^{-1}	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8
$ V_{ub} B \to \tau \nu \text{ (had. tagged)}$					
711 fb^{-1}	18.0	(7.1, 2.2)	19.5	2.5	19.6
5 ab^{-1}	6.5	(2.7, 2.2)	7.3	1.5	7.5
50 ab^{-1}	2.1	(0.8, 2.2)	3.1	1.0	3.2
$ V_{ub} B \to \tau \nu \text{ (SL tagged)}$. ,			
711 fb^{-1}	11.3	(10.4, 1.9)	15.4	2.5	15.6
5 ab^{-1}	4.2	(4.4, 1.9)	6.1	1.5	6.3
50 ab^{-1}	1.3	(2.3, 1.9)	2.6	1.0	2.8

|Vub| uncertainty @ Belle II

exclusive ~1.5%

inclusive ~ 4%

leptonic ~ 3%

Summary & Outlook IV

Exciting times are ahead!

Backup

From The Belle II Physics Book (1808.10567)

Observables Belle		Belle II	
	(2017)	$5 {\rm \ ab^{-1}}$	$50 {\rm ~ab^{-1}}$
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	_
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\text{ex.}} \pm 3.0\%_{\text{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91\cdot(1\pm24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D\tau\nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

From The Belle II Physics Book (1808.10567) I

Observables	Expected the. accu-	Expected	Facility (2025)
O BBCI (dibici)	racy	exp. uncertainty	1 (2020)
IIII1 0: 1	racy	exp. uncertainty	
UT angles & sides	deded		
ϕ_1 [°]	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
ϕ_3 [°]	***	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \to \eta' K^0)$ $A(B \to K^0 \pi^0)[10^{-2}]$	***	0.01	Belle II
$A(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$A(B \to K^+\pi^-) [10^{-2}]$	***	0.20	LHCb/Belle II
(Semi-)leptonic			
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	**	7%	Belle II
R(B o D au u)	***	3%	Belle II
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb

From The Belle II Physics Book (1808.10567) II

			,
Radiative & EW Penguins			
$\mathcal{B}(B o X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	***	0.005	Belle II
$S(B o K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B o ho\gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) \ [10^{-6}]$	***	20%	Belle II
$R(B o K^*\ell\ell)$	***	0.03	Belle II/LHCb
Charm			
$\mathcal{B}(D_s o \mu u)$	***	0.9%	Belle II
$\mathcal{B}(D_s o au u)$	***	2%	Belle II
$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$	**	0.03	Belle II
$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***	0.03	Belle II
$\phi(D^0 \to K_S^0 \pi^+ \pi^-) \ [^\circ]$	***	4	Belle II
Tau			
$\tau \to \mu \gamma \ [10^{-10}]$	***	< 50	Belle II
$\tau \to e \gamma \ [10^{-10}]$	***	< 100	Belle II
$\tau \to e\gamma \ [10^{-10}]$ $\tau \to \mu\mu\mu \ [10^{-10}]$	***	< 3	Belle II/LHCb