Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

ΚM

2019/4/9

Quarkonium studies at Belle II

Paradigm shift in the hadron spectroscopy

Homeworks from B-factory experiments (= Belle, BaBar):

- Nature of XYZ particles not understood
- Missing "conventional" quarkonium. How well quark model works?

2019/4/9

DIS 2019

	•			Hadro	n Iype
	Charmonium (-iike)	Bottomonium (-like)	υ, υ _(s)	Charmed baryon	нурегог
B-decay	η _c (2S) ψ ₂ (3823) X(3872) X(3915) Z _c (4050) Z _c (4250) Z _c (4430) Z _c (4200)		D* ₀ (2400) D ₁ (2430)	≞ _c (2930)	Belle BaBa
Initial State Radiation	Y <mark>(4260)</mark> Z(3900) Y(4008) Y(4360) Y(4660)				
Double charmonium	X(3860) ≒ _{Xc0} (2P) X(3940) X(4160)				
Two-photon	χ _{c2} (2P)				
e⁺e⁻→cc ^{bar}			D [*] _{s0} (2317) D ₀ (2550) D _J [*] (2600) D _J (2740) D ₃ [*] (2750) D [*] _{s1} (2700) D [*] _{s1} (2860) D _{sJ} (3040)	Σ _c (2800) Λ _c (2940) Ξ _c (2980) Ξ _c (3080) Ω _c (2770) Ξ _c (3055)	
Y(nS) decay		Z _b (10610) Z _b (10650) η _b (2S) h _b (1P) h _b (2P)			Ω(2012)
Charm baryon decay					Ξ(1620)

"New hadrons" from B-factories

~40 new hadrons discovered!

2019/4/9

Belle II computing

- Big data \rightarrow huge computing resource needed!

- O(10⁵) CPU cores, O(100 PB) storage
- Belle II adapted distributed computing mode
- MC production on-going with ~50 sites by automated system

- (2018 Apr-Jul, Achieved peak luminosity: 5x10³³/cm²/s. Collected **0.0005 ab**⁻¹)

DIS 2019

2019/4/9

Highlights in these 2 years

Belle II roll-in

First collisions at phase2!

C

qq

Apr 26, 2018

Apr 11, 2017

Phase 3 started

Nov 26, 2018

2019/4/9

DIS 2019

Mar 25th, 2019

Events/0.002 GeV/c²

2019/4/9

DIS 2019

m(pK π^+) (GeV/c²)

00 12

5.21 5.22

5.23 5.24 5.25

5.26 5.27 5.28 5.29 M_{bc} (GeV/c²)

Role of Belle II for quarkonium physics

- What Belle II can do is .
- Measure properties of already observed states (J^{PC}, decay, production...)

Further new multiplet?

- Establish the states whose evidence was not very strong.
- Discover new states.
- Many topics covered by <u>Belle II Physics book</u>

Total width with X(3872) \rightarrow DD π^0 decay mode

- The mass resolution is important to measure narrow width.
- As the Q-value becomes smaller, the mass resolution becomes better.
- Q-value of $DD\pi^0$ decay has significantly smaller Q-value than J/ $\psi\pi\pi$
- The mass resolution is 680 keV: ~3 times better than $J/\psi\pi^+\pi^-$ mode. No width measurement at Belle (1) due to poor statistics
- No bias seen up to O(100 keV) in the simulation.
- Huge improvement is expected.

$Br(B^+ \rightarrow K^+ X(3872))$

5

- Measurement only possible at e⁺e⁻ B-factory.
- There is a lower limit of 1.0×10 -4 from the constraint that all the product of branching fractions to be smaller than 1
- Even in this lower bound 7 measurement is possible at Belle II (naïve expectation)
- Measurement for X(3915) is also important to determine $Br(X(3915) \rightarrow J/\psi\omega)$
- Better B meson reconstruction should improve sensitivity. More realistic simulation on going

Search for partner states

Molecule/tetra-quark scenarios predict existence of X(3872) partner states.

C-odd partner:

- No structure observed in J/ ψ η by Belle. The upper limit is around half of X(3872) \rightarrow J/ ψ π⁺π⁻

Spin partner:

- $B \rightarrow K DD$ and $K D^*D^*$ not studied in detail yet.

 \mathbb{D}

by resonances in Kπ channel only BaBar reported m($\chi_{c_1}\pi^+$) can be described

DIS 2019

(in different M(Kπ) bins

19

- One of the best probes to study 1⁻⁻ quarkonium states.
- Many "Y" states are reported from B-factories and BES III.
- Also many "Z" states from "Y" decay.
- 50 ab^{-1} data corresponds to 2000-2300 $pb^{-1}/10$ MeV at 4-5 GeV.
- \rightarrow Compatible with BES III
- Belle II has advantage to access energy higher than 4.6 GeV, and take data simultaneously.

Initial State Radiation golden modes

Interpretation of X(3940/4160) and beyond

22

- All the known states observed in missing mass are J=0. X(3940/4160) should be J=0?
- If J=0, C-parity = +1 and decay into DD* indicate they are η_c family.
- However, the mass of X(3940) is \sim 100 MeV lower than quark model prediction.
- Also, the predicted mass of $\eta_c(4S)$ is 4400 MeV/c².
- Could be a exotic candidate?
- Full amplitude analysis at Belle II is awaited for J^P determination.
- Recoiling against other charmonium (η_c , χ_c ...) is also very interesting.

Look for decay modes including n should be very interesting.

Two photon collision ($J/\psi \phi$)

24

- Belle reported evidence of X(4350) in $J/\psi\phi$ (3.2 σ). This needs to be confirmed together with J^P determination.
- LHCb observed four states X(4140), X(4274), X(4500), X(4700). Note X(4140) and X(4274) with J^{PC}=1⁺⁺ can not be produced Measurement of two-photon width must be useful

This may make analysis simpler.

Phys. Rev. Lett. 118, 022003

Bottomonium: Digest Belle achievements

С С

Figures by U. Tamponi

Conventional bottomonium below threshold 26

- In contrast to charmonium, up to n=3 states or D, F waves are still below the BB threshold.
- SuperKEKB can reach Y(6S):
- Many opportunities from transition other than π
- Beam schedule still under discussion.

- BB* molecule with isospin=0 (isospin breaking is expected to be suppressed). Primary decay mode should be $\omega Y(1S)$.
- Observation of Y(4260) \rightarrow y X(3872), but no X_b in Y (5S) \rightarrow y (ω Y(1S))
- Not enough statistics ? Br(Y(4260) \rightarrow YX(3872)/Br(Y(4260) \rightarrow J/ $\psi \pi^+\pi^-$) ~ 0.1
- Y(4260) and Y(5S) are not the analogue states (next page)?
- X(3872) comes from accidental coincidence of DD* mass and $\chi_{c1}(2P)$?
- C-parity Partner of Z_b (= W_b) also predicted in various decay modes such as Y(nS)p, $\eta_b \pi$

2019/4/9

Energy scan

- Dip in R_b and suggesting structure in Y(nS)ππ: Another Y_b? Leading another Z_b?
- Final state other than Y(nS)/h_b ππ.
- May shed light on the anomalous $Y(5S) \rightarrow Y(1-3S)\pi\pi$
- Scan with open bottoms: $B^{(*)}B^{(*)}$, $B_{s}^{(*)}B_{s}^{(*)}$ indivisually. are expected have many features.
- Belle statistics: < 1 fb⁻¹ per point with ~ 10 MeV step. 10 fb⁻¹/10 MeV will be very helpful.

2019/4/9

Summary

Belle II has started!

- Many rediscoveries, good physics performances.
- 50 times statistics opens new door to reveal nature of XYZ exotics:
- Discover new states
- Confirmation of
- J^{PC} determination
- Production/decay properties

Stay tuned for the coming result for Belle II !

Backup

30

Ν
0
Ó
1
4
0

$\pi^+\pi^-$ [10.81], η [11.08], η' [11.49]	10529 - 10532	$(3, 4, 5)^{}$		4	$\Upsilon_J(1G)$
ω [11.31], ϕ [11.55]	10530	4-+	0	4	$\eta_{b4}(1G)$
ω [11.14], ϕ [11.38]	10350 - 10358	$(2, 3, 4)^{++}$		ω	$\chi_{bJ}(1F)$
$\pi^+\pi^-$ [10.63], η [10.90], η' [11.31]	10355	3^{+-}	0	చ	$h_{b3}(1F)$
$\pi^+\pi^-$ [10.73], η [11.00], η' [11.41]	10441 - 10455	$(1, 2, 3)^{}$	<u> </u>	2	$\Upsilon_J(2D)$
ω [11.23], ϕ [11.47]	10450	2^{-+}	0	2	$\eta_{b2}(2D)$
ω [10.93], ϕ [11.17]	10148	2^{-+}	0	2	$\eta_{b2}(1D)$
$\pi^+\pi^-$ [10.82], η [11.09], η' [11.50]	10541	1+-	0	1	$h_b(3P)$
ω [11.12], ϕ [11.36]	10336	$^{+-0}$	0	0	$\eta_b(3S)$
Emitted hadrons [Threshold, GeV/c^2]	Mass, MeV/c^2	J^{PC}	S	L	Name